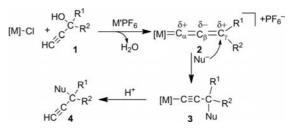
DOI: 10.1002/ejic.201001176

Synthesis and Structural Characterization of a Series of New Chiral-at-Metal Ruthenium Allenylidene Complexes

Stephen Costin, [a] Andria K. Widaman, [a] Nigam P. Rath, [a,b] and Eike B. Bauer*[a]

Keywords: P ligands / Ruthenium / Chirality


New chiral-at-metal ruthenium indenyl PPh₃ phosphoramidite allenylidene complexes have been synthesized and structurally characterized. Through thermal ligand-exchange reactions with [RuCl(Ind)(PPh₃)₂], the phosphoramidite ligands (R)-binol-N,N-dimethylphosphoramidite ($\bf{5a}$), (R)-binol-N,N-dibenzylphosphoramidite ($\bf{5b}$), (R,S)-binol-N-benzyl-N- α -methylbenzylphosphoramidite ($\bf{5c}$), and (R)-catechol-2-methylpyrrolidinephosphoramidite [(R)- $\bf{10}$] were converted into the complexes [RuCl(Ind)(PPh₃)(L)] [L = $\bf{5a}$, 79%; $\bf{5b}$, 87%; $\bf{5c}$, 80%, (R)- $\bf{10}$, 67%]. The complexes [RuCl(Ind)-(PPh₃)($\bf{5b}$)] and [RuCl(Ind)(PPh₃)($\bf{5c}$)] were obtained diastereomerically pure and, by reaction with propargylic alcohols, subsequently converted into the allenylidene complexes [Ru(Ind)(PPh₃)($\bf{5b}$)(=C=C=CRR')]+PF₆- (R = R' = Ph,

 $85\,\%;~R=Ph,~R'=Me,~66\,\%;~R=2-furyl,~R'=Me,~94\,\%;~R=R'=4-fluorophenyl,~76\,\%;~R=4-methoxyphenyl,~R'=Me,~66\,\%)~and~[Ru(Ind)(PPh_3)(5c)(=C=C=CRR')]^+PF_6^-~(R=R'=Ph,~91\,\%;~R=Ph,~R'=Me,~72\,\%;~R=2-furyl,~R'=Me,~93\,\%),~which were also obtained diastereomerically pure. Complex [RuCl(Ind)(PPh_3)(5b)]~and three of the new allenylidene complexes were characterized structurally, which showed that the chiral information was transferred from the precursor complex to the corresponding allenylidenes. Dynamic NMR experiments showed that during the synthesis of allenylidene complexes only one diastereomer was formed. The research presented herein has an impact on the chemistry of chiral allenylidene complexes as catalysts and as potential intermediates in propargylic substitution reactions.$

Introduction

Allenylidene complexes are cumulene-type organometallic architectures of the general formula $[L_nM=C=C=CRR']$. Although known since the 1970s, [2] their systematic investigation was significantly advanced when Selegue found in 1982 that allenylidene complexes **2** are readily accessible from propargylic alcohols **1** and an appropriate precursor complex in the presence of MPF₆ (Scheme 1). Since then, a variety of allenylidene complexes have been synthesized and characterized. The majority of allenylidene complexes are based on ruthenium, [4] but other metals have been used as well, for example, Cr and W, [5a] Mo, [5b] Mn, [2b] Re, [5c] Ir, [5d] Rh, [1f] Fe, [5e] Os, [5f, 5g] Pd, [5h, 5i] and Ni. [6]

Allenylidenes play an important dual role as catalysts and intermediates in a number of catalytic transformations. [7] Some ruthenium allenylidene complexes are efficient catalyst precursors in ring-closing metathesis reactions, [8a–8d] ring-opening metathesis polymerization, [8e,8f] and in the dehydrogenative dimerization of tin hydrides. [9] Calculations [10] as well as reactivity studies [11] have shown that the C_{α} and C_{γ} atoms of the allenylidene chain are electrophilic,

Scheme 1. Allenylidene complex formation and reactivity.

whereas the C_{β} atom is nucleophilic. Thus, the C_{β} atom can be protonated^[11a] and the C_{α} and C_{γ} atoms react with nucleophiles. Attack of the C_{γ} atom by monofunctional nucleophiles leads to the alkynyl complex 3 (Scheme 1), which delivers the substituted product 4 after protonolysis. [12] Thus, the whole sequence in Scheme 1 represents a propargylic substitution reaction via an allenylidene intermediate.[12] Nicholas described a multistep sequence for such propargylic substitution reactions employing stoichiometric amounts of toxic [Co₂(CO)₈] and involving cobalt-stabilized propargylic cations as intermediates.^[13] Stoichiometric multistep alternatives following the path depicted in Scheme 1 have been described in the literature. [4g] Dimeric^[14] and monomeric^[15] ruthenium complexes have been shown to catalyze propargylic substitution reactions with a variety of carbon and heteroatom nucleophiles, for which allenylidene complexes were suggested as intermediates. Chiral ruthenium dimeric complexes [RuCl(Cp*)(µ-S*R)]₂

 [[]a] Department of Chemistry and Biochemistry, University of Missouri – St. Louis,
 1, University Boulevard, St. Louis, MO 63121, USA

E-mail: bauere@umsl.edu

[b] Center for Nanoscience, University of Missouri – St. Louis,

1, University Boulevard, St. Louis, MO 63121, USA

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201001176.

(S*R = chiral thiolate) catalyze enantioselective substitution and cyclization reactions with enantiomeric excesses between 68 and 99%.^[16]

Chiral allenylidene complexes have been far less investigated than their achiral counterparts. In addition to the dimeric chiral thiolate ruthenium complexes mentioned above, a chiral (R)-binap ruthenium indenyl allenylidene complex has been used in a multistep procedure (similar to Scheme 1) to synthesize optically active γ -keto alkynes. [17a] In a related procedure, Gimeno and co-workers took advantage of the chiral allenylidenes derived from chiral propargylic alcohols to prepare optically active alkynes by reaction with different nucleophiles. [4g,17b,17c] Aromatic π - π interactions in optically active ruthenium allenylidene complexes have been reported to play an important role in stereoselection in potential catalytic substitution reactions involving allenylidene intermediates. [17d]

Chiral-at-metal allenylidene complexes are rare. We are aware of only two examples in the literature to date. Gimeno and co-workers synthesized a chiral-at-metal ruthenium indenyl complex with an optically active diphenylphosphane ferrocenyl oxazoline ligand, which was converted into the corresponding allenylidene complex. Similarly, Matsuo and co-workers synthesized and structurally characterized a chiral-at-metal ruthenium fullerene cyclopentadienyl allenylidene complex with the chiral chelate ligand 1,2-bis(diphenylphosphanyl)propane. In both cases, the allenylidene complexes exhibit stereogenic centers at both the metal and ligand, and were obtained with diastereomeric purity. Some chiral-at-metal allenylidene complexes synthesized from achiral starting materials are known and have been isolated as racemic mixtures.

We are interested in chiral-at-metal complexes^[19] as it has been shown that some of them are promising catalysts for producing high enantiomeric excesses in a number of enantioselective organic transformations.^[20] We therefore set out to advance the chemistry of chiral-at-metal allenylidene complexes and began to search for a general systematic approach to this class of compound. The starting points of our investigations were chiral-at-metal ruthenium chloro phosphoramidite complexes. Phosphoramidites (5 in Figure 1) are a class of versatile monodendate ligands^[21] that are easy to synthesize and they have been increasingly used as ligands in transition-metal-catalyzed organic transformations.^[22] We have already synthesized the chiral-at-metal ruthenium chloro cyclopentadienyl complex 6 (Figure 1) as a single optically pure diastereomer and employed it as a catalyst in the Mukaiyama aldol reaction.[23]

Figure 1. Phosphoramidites and a ruthenium complex thereof.

Complex **6** could be converted into the corresponding allenylidene complex but analytically pure material could not be isolated. We thus started to investigate structurally related indenyl alternatives. Indenyl complexes show increased reactivity in ligand-exchange reactions^[24] and as catalysts, ^[25] referred to in the literature as the "indenyl effect". ^[26]

Herein, we describe a general, convenient, high-yielding route to optically pure chiral-at-metal allenylidene indenyl ruthenium complexes. These allenylidene complexes were obtained from the corresponding chiral-at-metal ruthenium chloro complexes with chirality transfer and are the first examples of allenylidene complexes with phosphoramidite ligands. A portion of this work has been communicated previously.^[27]

Results

Ligand and Precursor Complex Syntheses

The majority of previously reported phosphoramidite ligands were derived from binol (see Figure 1). We were first interested in determining whether a simpler and thus cheaper diol could be employed in ligand and metal complex synthesis. By employing standard literature procedures, [21] catechol (7) was converted into the chiral phosphoramidite (*R*)-10 by using the commercial (*R*)-2-methylpyrrolidine (9) as the amine (Scheme 2). In a two-step, one-pot procedure, the catechol was first converted into the corresponding phosphorochloridite 8, which was further processed to the phosphoramidite (*R*)-10. The new ligand was obtained as a yellow oil in 78% isolated yield after purification by filtration and extraction.

Scheme 2. Phosphoramidite synthesis.

Our previously synthesized chiral-at-metal ruthenium cyclopentadienyl phosphoramidite complex **6** (Figure 1) was obtained from the precursor complex [RuCl(Cp)(PPh₃)₂] by thermal PPh₃ exchange.^[23] To obtain the corresponding indenyl ruthenium complexes, we envisaged a similar ligand exchange using the known^[28] ruthenium complex [Ru-Cl(Ind)(PPh₃)₂] (**11**, Ind = indenyl), which has previously been successfully employed in similar ligand-exchange reactions.^[26e] Accordingly, the phosphoramidite ligands **5a**–c and (*R*)-**10** were heated with **11** in toluene or THF for 1–3 hours (Scheme 3). Chromatographic work-up afforded the corresponding ruthenium complexes **12a**–d as red-orange powders in 67–87% isolated yields. The employment of toluene in the synthesis of **12a** and **12d** was necessary as we

Scheme 3. Synthesis of chiral-at-metal chloro phosphoramidite complexes 12.

could not remove THF, even by column chromatography. The new complexes are chiral at the metal and have been characterized by NMR (¹H, ¹³C, ³¹P), MS, IR, and, in most cases, by elemental analysis.

The coordination of one phosphoramidite and one PPh₃ ligand is readily indicated by two distinct ^{31}P NMR signals, which exhibit $^{2}J_{PP}$ couplings between 58.5 and 77.0 Hz, as expected for complexes with two different phosphorus atoms in a metal coordination sphere. As deduced from the NMR spectroscopic data, complexes 12a and 12d were isolated as a mixture of diastereomers, whereas complexes 12b and 12c were obtained as single optically pure diastereomers. The ^{31}P NMR spectra of 12a and 12d showed two sets of signals, and some signals in the ^{1}H NMR were doubled, revealing a diastereomeric ratio (dr) of 2:1 for 12a and 1:1 for 12d. We speculate that the smaller phosphoramidite ligands in 12a and 12d create only slight steric congestion at the metal, rendering the two diastereomers close

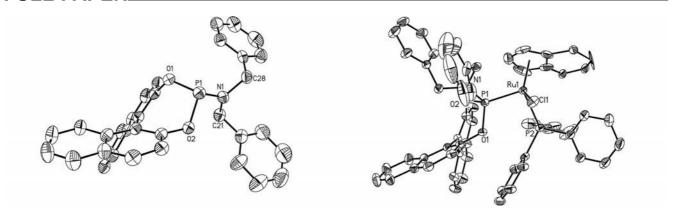
in energy. For complexes 12b and 12c bearing larger phosphoramidite ligands, only one set of NMR signals was observed in the crude material as well as after purification, which suggests that only one diastereomer was formed. The indenyl ligand gives very distinct ¹H and ¹³C NMR signals for the three protons and five carbon atoms of its coordinated five-membered ring.^[26e] As a result of the stereogenic centers at the metal and ligand, all these carbons and protons are diastereotopic and give individual signals in the corresponding NMR spectra.

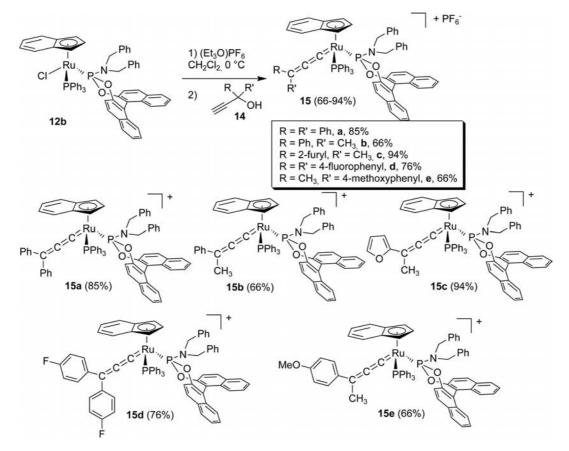
To unequivocally establish the structures of the new ruthenium complexes, the X-ray structure of complex **12b** was determined (Tables 1 and 2, Figure 2). The structure closely resembles that of the cyclopentadienyl analogue **6** (Figure 1), which was structurally characterized previously.^[23] To obtain information about the impact of the coordination of phosphoramidite ligands on their structures, an X-ray determination of the ligand **5b** was also performed (Tables 1

Table 1. Selected bond lengths and angles.

Bond lengths [Å] ^[a]	5b	12b · (CH ₂ Cl ₂)	[15a][PF ₆]· (CH ₂ Cl ₂)	[15b][PF ₆]• (CH ₂ Cl ₂) ₂	[15d][PF ₆]	13
Ru1-P1	_	2.1961(7)	2.2730(6)	2.2729(5)	2.2680(8)	2.321(2)
Ru1-P2	_	2.3504(8)	2.3131(7)	2.3037(5)	2.3217(9)	2.358(2)
Ru1-Cl1	_	2.4439(7)	_	_	_ ` ` `	_
Ru1-C10	_	-	1.887(2)	1.8937(19)	1.870(4)	1.878(5)
C10-C11	_	_	1.250(4)	1.250(3)	1.256(6)	1.260(7)
C11-C12	_	_	1.357(4)	1.348(3)	1.346(7)	1.353(7)
P1-N1	1.648(3)	1.663(3)	1.644(2)	1.6467(17)	1.654(3)	-
Bond angles [°]					,	
C10–Ru1–P1	_	89.28(3) ^[b]	92.73(7)	92.39(6)	89.59(11)	88.7(2)
C10-Ru1-P2	_	86.99(3) ^[b]	85.82(7)	84.81(6)	85.31(13)	97.4(2)
P1-Ru1-P2	_	98.87(3)	100.13(2)	100.416(17)	100.12(3)	96.95(5)
C10-C11-C12	_	_	177.6(3)	174.9(2)	174.8(5)	168.2(7)
C11-C12-CX	_		120.1(3)	120.76(19)	124.8(8)	118.2(6)
			(X = 13)	(X = 14)	(X = 10)	
O1-P1-O2	97.37(10)	99.58(10)	100.12(9)	99.76(7)	100.46(13)	_
O1-P1-N1	108.90(12)	108.61(12)	110.33(11)	96.36(8)	96.61(16)	_
O2-P1-N1	96.48(11)	95.13(12)	95.56(10)	109.91(8)	109.05(14)	_
Other geometrical parameters						
Ru-Cp [Å] ^[c]	_	1.909	1.927	1.931	1.940	1.951(5)
Dihedral angle [°][d]	_	_	34.4	14.8	27.6	15.5(3)
Deviation from planarity at nitrogen [Å] ^[e]	0.0305	0.0281	0.0108	0.0104	0.0045	_

[a] C10-C11-C12 is C1-C2-C3 in complex **15d**. [b] Cl1-Ru1-P1 and Cl1-Ru1-P2, respectively. [c] Distance between the centroid of Cp of the indenyl ligand and the ruthenium center. [d] Angle between the planes defined by the Cp centroid, Ru, C10 and C10-C11-C12-C13 (**15a,b**) and C1-C2-C3-C4 (**15d**), respectively. [e] Average deviation from a least-squares mean plane defined by N1, P1 and C21, C28 (**5b**), C30, C37 (**12b**), C25, C32 (**15a**), C38, C45 (**15b**), and C45, C52 (**15d**) [see Equation (1)].




Figure 2. Molecular structures of **5b** (left) and **12b** (right). Ellipsoids are shown at the 30% probability level. Hydrogen atoms and solvent molecules have been omitted for clarity. For key bond lengths and bond angles, see Table 1.

and 2, Figure 2). The structure features a planar geometry at the nitrogen atom, which has been observed before in the X-ray structure of the phosphoramidite ligand **5c**.^[29] Details are discussed below together as are the other structures obtained for this study.

Allenylidene Complex Synthesis

As only **12b** and **12c** were obtained with diastereomeric purity, they were employed in allenylidene complex synthesis under the conditions previously described for the synthe-

sis of the related allenylidene complex [Ru(Ind)(PPh₃)₂-(=C=C=CPh₂)]⁺[PF₆]⁻ (13).^[41] However, the use of NaPF₆ in MeOH at reflux^[41] with complex 12b and propargylic alcohol 14a resulted in a sluggish reaction generating a 1:1 mixture of diastereomers, as revealed by NMR (¹H, ³¹P). When AgPF₆ in CH₂Cl₂ was used for chloride abstraction followed by filtration to remove AgCl, the corresponding allenylidene complex was obtained with diastereomeric purity. However, we found that the chloride scavenger (Et₃O)-PF₆ can also be used for activation of the precursor complexes 12b and 12c. By using (Et₃O)PF₆ for chloride ab-

Scheme 4. Synthesis of allenylidene complexes.

EurJIC European Journal of Ingragair Chemistry

straction, the removal of MCl was not necessary, facilitating the work-up.

Accordingly, a CH_2Cl_2 solution of complex **12b** was first treated at 0 °C with 1 equiv. of $(Et_3O)PF_6$, which resulted in a slight darkening of the solution (Scheme 4). The corresponding propargylic alcohol **14** was subsequently added, which resulted in a quick color change from red to dark purple. After removal of all the volatiles and washing with Et_2O , the novel phosphoramidite complexes $[15a-e]^+$ were isolated as their PF_6^- salts as intensely colored purple powders in 66-94% isolated yields. These complexes will subsequently be referred to without charges and counterions.

The new allenylidene complexes **15** were characterized by NMR (1 H, 13 C, 31 P), MS, IR, and elemental analysis. Their formation was best demonstrated by the characteristic signals in the IR and 13 C NMR spectra. As generally observed for allenylidene complexes, $^{[1f]}$ the carbon atoms of the allenylidene chain give distinct resonances of low intensity in the 13 C NMR spectra for the C_{α} (293.8–299.4 ppm), C_{β} (185.2–199.7 ppm), and C_{γ} (159.9–162.8 ppm) carbons. The C_{α} resonance appears as a doublet, a doublet of doublets (J_{CP} = 20.8–23.6 Hz), or a multiplet due to C–P couplings. The resonances for C_{β} in **15b** also show J_{CP} coupling (13.8 Hz). Furthermore, the new complexes give an intense band for the allenylidene chain in the IR spectra between 1935 and 1949 cm⁻¹, which is also indicative of this class of complexes, $^{[1f]}$

In the ³¹P NMR spectra, the signals arising from the PPh₃ and phosphoramidite ligands in **15** are slightly shifted relative to those of the corresponding starting materials. Most significantly, only one set of signals was observed in all the NMR spectra of both crude and isolated material, which suggests that only one diastereomer was formed. No vinylic resonances were observed in the ¹H NMR spectra of **15b,c,e**, which suggests that no vinylvinylidene isomers were present in the isolated material and thus no isomerization took place, as sometimes reported when Selegue's protocol is applied to allenylidene synthesis (see below).^[1a,30] The allenylidene complexes **15** are air-stable powders; complex **15c** is somewhat hygroscopic and was isolated as a hydrate, as shown by ¹H NMR, IR, and elemental analysis.

To unequivocally establish the structures and configurations of the novel allenylidene complexes, the X-ray structures of complexes **15a,b,d** were determined (Tables 1 and 2, Figure 3). The solid-state structures show that the absolute configurations about the ruthenium center in **12b** and 15a,b,d are identical. The chloro ligand is replaced by the allenylidene chain with overall retention of the absolute

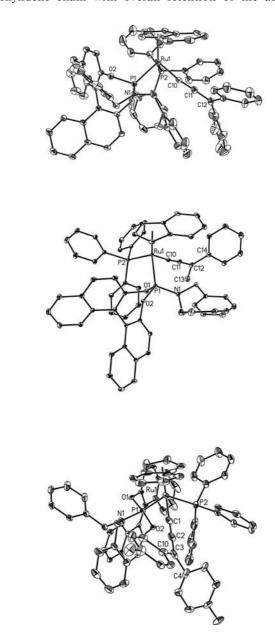
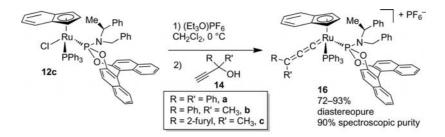



Figure 3. Molecular Structures of **15a** (top), **15b** (middle), and **15d** (bottom). Ellipsoids are shown at the 30% probability level. Hydrogen atoms and solvent molecules have been omitted for clarity. For key bond lengths and angles, see Table 1.

Scheme 5. Synthesis of less stable allenylidene complexes.

configuration and the chiral information has been transferred from the starting material 12b to the products 15a,b,d. The structures will be discussed in more detail in the next section.

The precursor complex 12c could also be converted into the corresponding allenylidene complexes by using the same protocol as employed for the synthesis of complexes 15 (Scheme 5). The resulting allenylidene complexes 16a-c were isolated in 72–93% yields with approximately 90% spectroscopic purity, but attempts at purification resulted in ongoing decomposition. The NMR, IR, and MS characterization data (which are given in the Supporting Information) are similar to those of complexes 15 and clearly show the formation of allenylidene complexes in diastereopure form. However, complexes 16b and 16c decomposed within hours in CDCl₃, as can be seen by the appearance of extra peaks in the ¹³C NMR spectra. Complexes 16 appear to be hygroscopic as the presence of water is observed in the ¹H NMR spectra and elemental analyses. We hypothesize that the extra methyl group on the carbon atom in the position α to the nitrogen creates significant steric congestion about the ruthenium center, which destabilizes the corresponding complexes leading to PPh₃ dissociation.

Further Experiments Related to the Stereochemistry of the New Complexes

The chloro precursor complexes 12b and 12c and all the allenylidene complexes 15 and 16 were obtained as enantio-pure single diastereomers. NMR evidence of a second diastereomer was not observed for any of the precursors or allenylidene complexes. To obtain further information about the configurational stability of the complexes as well as the diastereoselective formation of the allenylidenes, dynamic NMR experiments were performed with the chloro precursor 12b and allenylidene complex 15a.

Both complexes **12b** and **15a** showed configurational stability between –50 and +25 °C, as indicated by their ¹H and ³¹P NMR spectra (see the Supporting Information), which exhibit only minor line-broadening at different temperatures. The precursor complex **12b** is configurationally stable up to 60 °C, whereas the allenylidene complexes **15** and **16** show significant decomposition at elevated temperatures.

To obtain information about the diastereoselective formation of the allenylidene complexes, a dynamic NMR experiment was performed. A sample of the chloro precursor complex 12b was first treated with (Et₃O)PF₆ and ¹H and ³¹P NMR spectra were recorded at different temperatures. Subsequently, the propargylic alcohol 14a was added to the same sample, and again ¹H and ³¹P NMR spectra were recorded. All the NMR spectra are given in the Supporting Information and Figure 4 shows the three ³¹P NMR spectra recorded at -30 °C.

It appears that abstraction of the chloride from the precursor complex 12b (Figure 4, top) results in a species 17 (Figure 4, middle), which shows some dynamic behavior in solution. A second set of doublets appears, which might be due to a second diastereomer formed in solution (at +25 °C, only two very broad peaks at around 175 and 45 ppm were observed, see the Supporting Information). Upon addition of the propargylic alcohol, only one set of signals for the product was observed in the ³¹P NMR spectrum (Figure 4, bottom). These spectra show that only one of the two possible diastereomers of the allenylidene complex forms during the reaction.

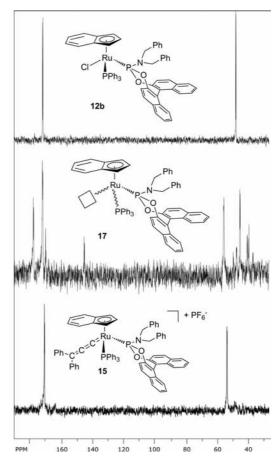


Figure 4. ^{31}P NMR spectra recorded at -30 °C for different steps in allenylidene formation. Top: starting complex **12b**. Middle: spectrum recorded immediately after the addition of (Et₃O)PF₆. Bottom: spectrum recorded immediately after the addition of propargylic alcohol **14a**.

A potential second diastereomer could result from an exchange of the two phosphorus-based ligands to give a mixture of **17a** and **17b** (Scheme 6). Assuming a dynamic process at the metal, species **17a** in Scheme 6 must react with the propargylic alcohol much faster than species **17b** to produce the observed diastereoselectivity. However, it has been reported in the literature that extra signals in the NMR spectra of the corresponding complexes may appear at low temperatures due to slowing of dynamic processes centered on the ligands. In the free ligand **5c**, dynamic NMR experiments have shown that rotation around the P–N bond is frozen at –70 °C. [29]

Scheme 6. NMR tube experiment. The square denotes an open coordination site.

Discussion

Scope of the Reaction

This report describes the synthesis and structural characterization of the first ruthenium phosphoramidite allenylidene complexes. The new complexes are chiral at the metal and were obtained from the corresponding chloro precursors with chirality transfer, as determined by the X-ray structures of the complexes 12b and 15a,b,d. Both electronrich (14e) and electron-poor (14d) propargylic alcohols bearing either two aryl groups (14a,d) or one aryl and one alkyl group (14b,c,e) could be employed in the synthesis of the complexes (Scheme 4). Purely aliphatic propargylic alcohols failed to be converted into the corresponding allenylidenes, which is in accord with the general observation in the literature that aliphatic allenylidene complexes are less stable than those bearing at least one aryl substituent at the γ carbon.^[1] Interestingly, we did not observe any vinylvinylidene species, which often form when a propargylic alcohol with α protons on the γ substituent are employed (Scheme 7).[30] In that case, dehydration of the intermediate 18 can, in addition to the allenylidene complex, give the corresponding vinylvinylidene species 19. We hypothesize that for steric reasons, the formation of the bent vinylvinylidene chain in 19 is disfavored. The coordination sphere about the ruthenium center in the allenylidene complexes 15 is very congested and a bent vinylvinylidene chain is sterically more demanding than a straight allenylidene

Scheme 7. Potential vinylvinylidene formation.

chain. We also did not observe allenylidene-to-indenylidene rearrangements,^[31] which would also increase steric demand about the ruthenium center.

X-ray Crystallography

The X-ray analyses of 12b and 15a,b,d confirm the proposed piano-stool structures of the complexes. Key bond lengths and angles are compiled in Table 1 and, for comparison, the corresponding values for the structurally related complex [Ru(Ind)(PPh₃)₂(=C=C=CPh₂)]PF₆ (13) are also listed.[41] The bond angles about the ruthenium center range from 84.81(6) to 92.73(7)°. The structures are thus best described as slightly distorted octahedra. In all three complexes, the Ru-P bond lengths for the phosphoramidite ligands are shorter than those for the PPh3 ligands, with Ru-P1 ranging from 2.1961(7) to 2.2730(6) Å compared with the Ru-P2 bond lengths of 2.3037(5) to 2.3504(8) Å, respectively. We observed this phenomenon previously in the X-ray structures of complexes of 6 (Figure 1).^[23] As a result of the oxygen atoms bonded to the phosphorus, the phosphoramidite ligands might be somewhat more π -acidic than PPh3. This could result in a higher degree of metal-toligand back-bonding, which would shorten the Ru-P bond.

As reported for ligand **5c**,^[29] ligand **5b** features an almost planar nitrogen atom, as seen by the calculated average deviation from planarity involving the nitrogen and the two carbon and one phosphorus atom bonded to it [Table 1 and Equation (1)]. We ascribed the planarity tentatively to a partial double-bond character of the P–N bond. Interestingly, the free ligand deviates from planarity slightly more (0.0305 Å) than the coordinated ligand (0.0045–0.0281 Å). Upon coordination of the phosphoramidite ligand, resonance structure **21** in Equation (1) may contribute significantly to the various resonance structures of ligand **5b**, increasing the double-bond character of the P–N bond and hence the planarity about the nitrogen atom.

$$\begin{bmatrix} O & \cdots & Ph & O & \oplus & Ph \\ O & P-N & Ph & O & P-N & Ph \\ 20 & 21 & & 21 \end{bmatrix}$$
 (1)

There are slight structural differences between the allenylidene complexes 15a,b,d and 13, which mainly concern the geometry about the ruthenium center. The P1–Ru–P2 bond angles for 15a,b,d are about 3° larger than for 13, as expected for the bulkier phosphoramidite ligands. The bond lengths about the ruthenium center for the phosphoramidite complexes 15a and 15b are slightly smaller than for 13, which could be associated with greater π -acidity of the phosphoramidite ligands.

The C10–C11–C12 angles of the allenylidene chain in **15a,b,d** are 177.6(3), 174.9(2), and 174.8(5)°, respectively. This slight deviation from the ideal angle of 180° has frequently been observed for other allenylidene complexes.^[1] The angles between C11, C12, and the *ipso* atom of the

substituent at C12 are between 120.1(3) and 124.8(8)°, which confirms the sp² hybridization of the C_{γ} atom of the allenylidene chain. The C=C bonds of the allenylidene chain are not of equal length in the three complexes. The internal C_{α} = C_{β} bond is significantly shorter [1.250(3)–1.256(6) Å] than the terminal C_{β} = C_{γ} bond [1.346(7)–1.357(4) Å]. Such bond differences are frequently observed in allenylidene complexes^[1a] and they can be explained by the resonance contributor **B**, which exhibits an internal triple bond and results in a significantly shorter bond length in the X-ray analysis; see Equation (2).

The position of the indenyl ligand relative to the other three ligands in the solid-state structures is schematically shown in Figure 5. As can be seen in C, for the chloro complex 12b the aryl ring of the indenyl ligand occupies the interstitial site between the chloro and the PPh₃ ligands. This conformation might be ascribed to steric factors as it is the largest of the three potential interstitial sites. However, in the corresponding allenylidene complexes 15a and 15b, the position of the three ligands relative to the indenyl ring has changed. Now, the aryl ring of the indenyl ligand is oriented along the allenylidene chain, represented as **D** in Figure 5. The same orientation was observed in the structurally related complex 13.[41] This orientation might have an impact on the potential attack of nucleophiles as the electrophilic C_{α} carbon atom is sterically much more protected than the C_{γ} carbon.

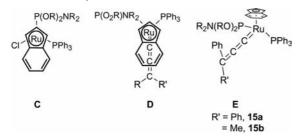


Figure 5. Schematic representation of the conformations of the chloro and allenylidene complexes.

The positions of the two substituents at the C_{γ} carbon atom in the allenylidene complexes (two aryls in **15a** and one phenyl and one methyl in **15b**) is schematically represented by **E** (Figure 5). The substituents are oriented almost in a plane with an axis formed by the C_{α} atom of the allenylidene chain, the ruthenium center, and the cyclopentadienyl centroid of the indenyl ligand. However, some deviation from this planar alignment was observed, which has also been described for complex **13**.^[41] This deviation can be quantified by the angle between the planes defined by the Cp centroid, Ru, and C10 and C10–C11–C12–C13 or C1–C2–C3–C4 (dihedral angle in Table 1)^[41] and is 34.4° for **15a**, 14.8° for **15b**, 27.6° for **15d**, and 15.5(3)° for **13**. For **15b**, the phenyl ring points upwards and the methyl substit-

uent points downwards relative to the indenyl ligand. It has previously been suggested that the C_{γ} substituents are aligned in such a way as to maximize the overlap between the d π HOMO of the metal and the p π LUMO of the allenylidene chain, allowing for maximized metal-to-ligand back-donation. $^{[1a,32]}$

As can be seen in the schematic representation **D** in Figure 5, the allenylidene chain is flanked by the phosphoramidite ligand to the left and the PPh3 ligand to the right. Nucleophilic attack on the C_{γ} carbon as shown in Scheme 1 can either take place from the left or the right side in **D** and as consequence of the chirality at the metal the two faces are inequivalent. Figure 6 shows selected atoms of the Xray structure of 15b. It shows that one side of C_{γ} is shielded by the phosphoramidite ligand much more efficiently than the other side is shielded by the PPh3 ligand. The distance of the C_{ν} carbon atom to the centroid of the closest phenyl ring of the PPh₃ ligand is 4.97 Å (dotted line in Figure 6, calculated with the Mercury 1.4.2 software^[40]), whereas it is 3.80 Å for the centroid of the closest phenyl ring of the phosphoramidite ligand. This difference potentially allows for stereodifferentiation upon attack of the C_{γ} atom by a nucleophile. Stoichiometric and catalytic experiments to take advantage of this situation in propargylic substitution reactions (as exemplified in Scheme 1) are currently underway.

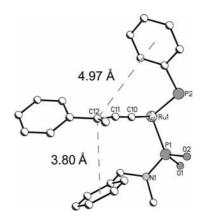


Figure 6. Shielding of the C_{γ} carbon atom by the ligands.

Conclusions

We have synthesized the first ruthenium allenylidene complexes bearing chiral phosphoramidite ligands in the coordination sphere. The new allenylidene complexes are chiral at the metal and were obtained as optically pure single diastereomers from the corresponding chloro precursor complexes. The chloro ligand was replaced with the allenylidene chain with complete transfer of chirality. The results presented herein may have an impact on the catalytic applications of allenylidene complexes both as chiral catalysts and chiral reactive intermediates in propargylic substitution reactions. Corresponding studies are underway.

Experimental Section

General Methods: Chemicals were treated as follows: THF, toluene, and diethyl ether (Et₂O) were distilled from Na/benzophenone, CH₂Cl₂ was distilled from CaH₂. (R)-1,1'-Binaphthyl-2,2'-diol [(R)-binol] (Strem), catechol (Fisher), phosphorus trichloride (PCl₃), N-methyl-2-pyrrolidinone (Acros), (R)-2-methylpyrrolidine (Aldrich), 1,1-diphenyl-2-propyn-1-ol (Aldrich), 2-phenyl-3-butyn-2-ol (Aldrich), (Et₃O)PF₆ (Aldrich), Celite® (Aldrich), tert-butyl methyl ether (Aldrich), and other materials were used as received. (R)-binol-N,N-dimethylphosphoramidite (**5a**), [^{21a}] (R)-binol-N,N-dibenzylphosphoramidite (**5b**), [^{21c}] (R,S)-binol-N-benzyl-N-α-methylbenzylphosphoramidite (**5c**), [³³] 2-(2-furyl)-3-butyn-2-ol (**14c**), [³⁴] bis(4-fluorophenyl)-3-propyn-2-ol (**14d**), [^{35a}] 2-(4-methoxyphenyl)-3-butyn-2-ol (**14e**), [^{35b}] and [RuCl(Ind)(PPh₃)₂] (**11**) [²⁸] were synthesized according to literature procedures.

NMR spectra were recorded at room temperature with a Bruker Avance 300 MHz or Varian Unity Plus 300 MHz instrument and referenced to a residual solvent signal. All assignments are tentative. Exact masses were obtained with a JEOL MStation [JMS-700] mass spectrometer. Melting points were measured with an Electrothermal 9100 instrument. IR spectra were recorded with a Thermo Nicolet 360 FT-IR spectrometer. Elemental analyses were performed by Atlantic Microlab Inc., Norcross, GA, USA.

(R)-Catechol-2-methylpyrrolidine-phosphoramidite [(R)-10]: Phosphorus trichloride (PCl₃; 2.0 mL, 23 mmol) was added to a Schlenk flask containing catechol (0.402 g, 3.65 mmol) followed by Nmethyl-2-pyrrolidinone (0.01 mL, 0.1 mmol). The resulting slurry was heated at reflux for 30 min. Excess PCl₃ was removed under oil-pump vacuum to yield a yellow liquid. Et₂O (5.0 mL) was added and removed under vacuum twice to remove remaining PCl₃. The liquid was dissolved in THF (12 mL) and triethylamine was added (0.83 mL, 6.3 mmol) followed by (R)-2-methylpyrrolidine (0.32 mL, 3.2 mmol). After stirring for 1 h at room temperature, the resulting slurry was filtered through Celite® and the solvent removed under vacuum. The yellow liquid was dissolved in CH2Cl2 (30 mL) and extracted with saturated aq. NaHCO₃ (2×30 mL). The organic layer was dried with Na2SO4, filtered, and the volatiles removed under oil-pump vacuum to yield (R)-10 as a yellow oil (0.569 g,2.55 mmol, 78%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 6.92– 6.84 (m, 2 H, Ph), 6.82–6.75 (m, 2 H, Ph), 3.79–3.63 (m, 1 H, NCHCH₃), 2.92–2.73 (m, 2 H, NCH₂), 1.90–1.78 (m, 1 H, CHH'), 1.77-1.52 (m, 2 H, CH₂), 1.41-1.29 (m, 1 H, CHH'), 1.11 (d, ${}^{3}J_{HH}$ = 6.4 Hz, 3 H, CH₃) ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃, 25 °C): δ = 146.8 (d, ${}^{2}J_{CP}$ = 8.1 Hz, CO), 146.6 (d, ${}^{2}J_{CP}$ = 8.1 Hz, C'O), 122.0 (s, Ph), 111.5 (s, Ph), 54.5 (d, ${}^{2}J_{CP}$ = 22.2 Hz, NCH), 44.3 (d, ${}^{2}J_{CP}$ = 4.1 Hz, NCH₂), 34.6 (d, ${}^{3}J_{CP}$ = 3.5 Hz, CH₂), 24.9 (d, ${}^{3}J_{CP} = 1.6 \text{ Hz}$, CH₂), 24.0 (d, ${}^{3}J_{CP} = 8.3 \text{ Hz}$, CH₃) ppm. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C): δ = 145.0 (s) ppm. IR (neat solid): $\tilde{v} = 3061$ (m), 2966 (s), 2871 (s), 1604 (m), 1483 (s), 1335 (s), 1240 (s), 859 (s), 745 (s) cm⁻¹. HRMS: calcd. for $C_{11}H_{14}NO_2P$ 223.0762; found 223.0755. $C_{11}H_{14}NO_2P$ (223.21): calcd. C 59.19, H 6.32; found C 58.90, H 6.31.

[RuCl(Ind)(PPh₃)(5a)] (12a): Toluene (5 mL) was added to a Schlenk flask containing [RuCl(Ind)(PPh₃)₂] (11; 0.218 g, 0.281 mmol) and phosphoramidite 5a (0.101 g, 0.281 mmol) and the mixture was heated at 65 °C in an oil bath for 2 h. The solvent was removed under vacuum and the resulting solid was purified by flash chromatography employing a 2×15 cm silica column. The remaining ligand and PPh₃ were eluted with CH₂Cl₂ and then the complex was eluted with CH₂Cl₂/tert-butyl methyl ether (9:1, v/v), collecting the red band. The solvent was removed under vacuum to

give 12a as an orange solid in a 2:1 diastereomeric mixture (0.195 g, 0.223 mmol, 79%); m.p. 148–149 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C):^[36] δ = 7.90–7.66 (m, 6 H, arom.), 7.52 (d, ${}^{3}J_{HH}$ = 4.3 Hz, 2 H, arom.), 7.45–7.08 (m, 18 H, arom.), 7.06– 6.95 (m, 5 H, arom.), 6.92–6.80 (m, 14 H, arom.), 6.73 (t, ${}^{3}J_{HH}$ = 7.2 Hz, 1 H, arom.), 6.55 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 1 H, arom.), 5.47–5.40 (m, 1 H, indenyl), 5.28 (br. s, 1 H, indenyl), 4.97 (br. s, 0.5 H, indenyl*), 4.63 (br. s, 0.5 H, indenyl*), 4.18 (br. s, 1 H, indenyl), 3.71 (br. s, 0.5 H, indenyl*), 2.47 (s, 3 H, CH₃), 2.43 (s, 3 H, CH₃'), 1.92 (br. s, 1.5 H, CH₃*), 1.89 (br. s, 1.5 H, CH₃'*) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C; major diastereomer): [37] $\delta = 153.2$ (s, arom.), 150.9 (d, $J_{\rm CP}$ = 14.7 Hz, arom.), 149.6 (d, $J_{\rm CP}$ = 8.0 Hz, arom.), 136.7 (s, arom.), 136.1 (s, arom.), 134.6 (d, $J_{CP} = 10.5 \text{ Hz}$, arom.), 134.2 (d, $J_{CP} = 10.0 \text{ Hz}$, arom.), 133.4 (s, arom.), 133.1 (s, arom.), 131.3 (s, arom.), 131.2 (d, $J_{CP} = 3.7 \text{ Hz}$, arom.), 130.2 (s, arom.), 129.8 (s, arom.), 129.4 (br. s, arom.), 128.8 (s, arom.), 128.6 (d, $J_{CP} = 3.3$ Hz, arom.), 128.4 (s, arom.), 128.3 (s, arom.), 128.2 (s, arom.), 128.1 (s, arom.), 127.8 (s, arom.), 127.7 (s, arom.), 127.6 (s, arom.), 127.4 (s, arom.), 127.2 (s, arom.), 127.1 (s, arom.), 126.2 (s, arom.), 126.0 (s, arom.), 125.2 (d, $J_{CP} = 4.2 \text{ Hz}$, arom.), 125.0 (s, arom.), 124.8 (s, arom.), 124.0 (s, arom.), 123.9 (s, arom.), 123.0 (d, $J_{CP} = 3.3$ Hz, arom.), 122.0 (s, arom.), 118.3 (s, arom.), 113.0 (d, $J_{CP} = 5.5 \text{ Hz}$, indenyl), 112.2 (d, $J_{CP} = 5.9 \text{ Hz}$, indenyl), 91.4 (s, indenyl), 66.9 (d, $J_{CP} = 9.7$ Hz, indenyl), 63.3 (s, indenyl), 39.5 (s, CH₃), 39.4 (CH₃') ppm. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C): $\delta = 177.5$ (br. s, phosphoramidite*), 176.3 (d, ${}^{2}J_{PP} =$ 65.1 Hz, phosphoramidite), 52.1 (br. s, PPh₃*), 49.2 (d, ${}^{2}J_{PP}$ = 65.1 Hz, PPh₃) ppm. IR (neat solid): $\tilde{v} = 3047$ (w), 2917 (w), 1586 (w), 1432 (m), 1223 (m), 945 (m), 693 (m) cm⁻¹. HRMS: calcd. for $C_{49}H_{40}NO_2P_{235}C1^{102}Ru$ 873.1265; found 873.1284.

[RuCl(Ind)(PPh₃)(5b)] (12b): THF (8 mL) was added to a Schlenk flask containing [RuCl(Ind)(PPh₃)₂] (11; 0.303 g, 0.390 mmol) and phosphoramidite **5b** (0.200 g, 0.391 mmol) and the solids dissolved. The red solution was heated at reflux in an oil bath for 1 h. The solvent was removed under vacuum and the resulting solid was purified by flash chromatography employing a 2.5 × 15 cm silica column. The remaining ligand and PPh3 were eluted with CH2Cl2 and then the complex was eluted with CH₂Cl₂/Et₂O (99:1, v/v), collecting the red band. The solvent was removed under vacuum to give 12b as a single diastereomer (0.347 g, 0.338 mmol, 87%); m.p. 176-177 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.11 (t, ${}^{3}J_{HH}$ = 8.3 Hz, 2 H, arom.), 7.70 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1 H, arom.), 7.62 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1 H, arom.), 7.54 (t, $^{3}J_{HH} = 7.1 \text{ Hz}, 1 \text{ H}, \text{ arom.}), 7.52-7.44 \text{ (m, 2 H, arom.)}, 7.35-7.20$ (m, 14 H, arom.), 7.15–6.84 (m, 12 H, arom.), 6.75 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 3 H, arom.), 6.50-6.35 (m, 5 H, arom.), 5.71 (br. s, 1 H, indenyl), 5.36 (br. s, 1 H, indenyl), 5.00 (d, ${}^{2}J_{HH}$ = 10.6 Hz, 1 H, NCHH'), 4.95 (d, ${}^{2}J_{HH}$ = 10.6 Hz, 1 H, NCHH'), 4.05 (br. s, 1 H, indenyl), 3.54 (d, ${}^2J_{\rm HH}$ = 15.1 Hz, 1 H, NC*H*H'), 3.49 (d, ${}^2J_{\rm HH}$ = 15.1 Hz, 1 H, NCHH') ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ = 151.3 (s, arom.), 151.1 (s, arom.), 149.2 (s, arom.), 148.5 (s, arom.), 139.4 (s, arom.), 134.3 (br. s, arom.), 133.8 (s, arom.), 132.7 (s, arom.), 131.5 (s, arom.), 131.1 (s, arom.), 130.2 (s, arom.), 130.0 (s, arom.), 129.5 (s, arom.), 128.6 (s, arom.), 128.4 (s, arom.), 127.2 (s, arom.), 126.2 (s, arom.), 125.8 (s, arom.), 125.5 (s, arom.), 125.0 (s, arom.), 124.4 (s, arom.), 123.3 (s, arom.), 122.8 (s, arom.), 122.0 (s, arom.), 121.4 (s, arom.), 113.6-113.5 (m, indenyl), 111.8-111.7 (m, indenyl), 90.4 (s, indenyl), 67.1 (d, ${}^{2}J_{CP} = 10.8 \text{ Hz}$, indenyl), 62.0 (s, indenyl), 50.6 (s, NCH₂), 50.5 (s, NCH₂) ppm. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C): δ = 172.8 (d, ² J_{PP} = 58.5 Hz, phosphoramidite), 46.8 (d, ${}^{2}J_{PP}$ = 58.5 Hz, PPh₃) ppm. IR (neat solid): $\tilde{v} = 3050$ (w), 1586 (w), 1223 (m), 940 (m), 741 (m), 692 (m) cm⁻¹. HRMS: calcd. for $C_{61}H_{48}ClNO_2P_{235}^{102}Ru$ 1025.1892; found 1025.1924. $C_{61}H_{48}CINO_2P_2Ru$ (1025.51): calcd. C 71.44, H 4.72; found C 71.44, H 4.66.

[RuCl(Ind)(PPh₃)(5c)] (12c): THF (10 mL) was added to a Schlenk flask containing [RuCl(Ind)(PPh₃)₂] (11; 0.442 g, 0.569 mmol) and phosphoramidite 5c (0.299 g, 0.570 mmol) and the solids dissolved. The red solution was heated at reflux for 3 h. The solvent was removed under vacuum and the resulting solid was purified by flash chromatography employing a 2×16 cm silica column. The remaining ligand and PPh₃ were eluted with CH₂Cl₂ and then the complex was eluted with CH₂Cl₂/Et₂O (99:1, v/v), collecting the red band. The solvent was removed under vacuum to give 12c as a single diastereomer (0.471 g, 0.453 mmol, 80%); m.p. 162-164 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.98$ (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2 H, arom.), 7.62–7.55 (m, 4 H, arom.), 7.43 (t, ${}^{3}J_{HH}$ = 7.2 Hz, 1 H, arom.), 7.35–7.29 (m, 5 H, arom.), 7.27–7.25 (m, 2 H, arom.), 7.20–7.01 (m, 9 H, arom.), 7.00–6.85 (m, 7 H, arom.), 6.80– 6.72 (m, 4 H, arom.), 6.62–6.58 (br. m, 2 H, arom.), 6.44 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 1 H, arom.), 6.33–6.22 (br. m, 4 H, arom.), 6.19 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1 H, arom.), 5.81–5.79 (m, 1 H, indenyl), 5.57 (br. s, 1 H, indenyl), 3.98 (br. s, 1 H, indenyl), 3.90–3.81 (m, 1 H, CHH'), 3.22–3.13 (m, 1 H, CHH'), 1.07 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 3 H, CH₃) ppm.^[38] 13 C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ = 151.4 (s, arom.), 151.2 (s, arom.), 143.2 (d, $J_{CP} = 8.1 \text{ Hz}$, arom.), 142.8 (s, arom.), 137.9 (s, arom.), 137.5 (s, arom.), 137.4 (s, arom.), 137.0 (s, arom.), 135.7 (d, J_{CP} = 39.9 Hz, arom.), 134.2 (s, arom.), 133.7 (s, arom.), 133.2 (s, arom.), 133.1 (s, arom.), 132.7 (s, arom.), 131.4 (s, arom.), 131.0 (s, arom.), 130.1 (s, arom.), 129.7 (s, arom.), 129.2 (s, arom.), 128.7 (s, arom.), 128.5 (d, $J_{CP} = 24.0 \text{ Hz}$, arom.), 128.3 (d, $J_{CP} = 18.0 \text{ Hz}$, arom.), 128.1 (s, arom.), 128.0 (s, arom.), 127.2 (s, arom.), 127.1 (s, arom.), 126.5 (s, arom.), 126.3 (s, arom.), 126.0 (s, arom.), 125.7 (d, $J_{CP} = 26.1$ Hz, arom.), 124.9 (s, arom.), 123.9 (s, arom.), 122.9 (s, arom.), 122.7 (s, arom.), 122.0 (s, arom.), 121.3 (s, arom.), 114.3 (d, $J_{CP} = 18.0 \,\text{Hz}$, indenyl), 113.0 (d, $J_{CP} = 18.0 \,\text{Hz}$ 24.0 Hz, indenyl), 90.4 (s, indenyl), 68.3 (d, ${}^{2}J_{CP} = 48.0$ Hz, indenyl), 59.1 (s, indenyl), 54.9 (d, ${}^{2}J_{CP}$ = 68.1 Hz, NC), 49.0 (s, NC'), 21.7 (d, ${}^{3}J_{CP} = 21.9 \text{ Hz}$, CH₃) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (121 MHz, CDCl₃, 25 °C): $\delta = 172.0$ (d, ${}^{2}J_{PP} = 58.6$ Hz, phosphoramidite), 45.9 (d, ${}^{2}J_{PP}$ = 58.6 Hz, PPh₃) ppm. IR (neat solid): \tilde{v} = 3051 (w), 2927 (w), 1584 (w), 1430 (m), 1221 (m), 949 (s) cm⁻¹. HRMS: calcd. $\mbox{for} \quad C_{62} H_{50} CINO_2 P_{235}{}^{102} Ru \quad \ 1039.2048; \quad \mbox{found} \quad \ 1039.2004.$ $C_{62}H_{50}CINO_{2}P_{2}Ru$ (1039.54): calcd. C 71.63, H 4.85; found C 71.04, H 4.84.

 $[RuCl(Ind)(PPh_3)\{(R)-10\}]$ (12d): Phosphoramidite (R)-10 (0.032 g, 0.14 mmol) was added as a solution in toluene (3 mL) to a Schlenk flask containing [RuCl(Ind)(PPh₃)₂] (11; 0.109 g, 0.141 mmol). The mixture was heated at 65 °C for 2 h in an oil bath after which the solvent was removed under oil-pump vacuum. The resulting red solid was purified by flash chromatography employing a 1×11 cm silica column. The remaining ligand and PPh3 were eluted with CH₂Cl₂ and then the complex was eluted with CH₂Cl₂/tert-butylmethyl ether (9:1, v/v), collecting the red band. The solvent was removed under oil-pump vacuum to give complex 12d as an orange solid in a 1:1 diastereomeric mixture (0.069 g, 0.094 mmol, 67%); m.p. 99–100 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C):^[36] $\delta = 7.74-7.57$ (m, 2 H, arom.), 7.33-6.94 (m, 34 H, arom.), 6.90-6.73 (m, 3 H, arom.), 6.73-6.57 (m, 3 H, arom.), 6.51-6.37 (m, 2 H, arom.), 6.00-5.85 (m, 2 H, arom.), 5.09 (br. s, 1 H, indenyl), 4.92 (br. s, 2 H, indenyl), 4.69 (br. s, 1 H, indenyl), 4.31 (br. s, 1 H, indenyl), 4.01 (br. s, 1 H, indenyl), 3.89-3.79 (m, 1 H, NCHCH₃), 3.79-3.69 (m, 1 H, NCHCH₃*), 3.45-3.32 (m, 1 H, NCHH'), 3.21-3.08 (m, 1 H, NCHH'*), 2.91-2.80 (m, 1 H, NCHH'), 2.78–2.65 (m, 1 H, NCHH'*), 1.89–1.57 (m, 5 H, 2 CH₂ CHH'), 1.57–1.44 (m, 1 H, CHH'*), 1.37–1.23 (m, 2 H, 2 CHH'),

 $0.96 \text{ (d, }^{3}J_{HH} = 6.4 \text{ Hz}, 3 \text{ H, CH}_{3}), 0.81 \text{ (d, }^{3}J_{HH} = 6.4 \text{ Hz}, 3 \text{ H,}$ CH₃*) ppm. 13 C{ 1 H} NMR (75 MHz, CDCl₃, 25 °C): δ = 148.2 (d, $J_{\rm CP} = 5.6$ Hz, arom.), 147.6 (d, $J_{\rm CP} = 6.9$ Hz, arom.), 147.0 (d, $J_{\rm CP}$ = 5.0 Hz, arom.), 146.1 (d, J_{CP} = 5.6 Hz, arom.), 136.8 (s, arom.), 136.5 (s, arom.), 136.1 (s, arom.), 135.9 (s, arom.), 134.2 (d, J_{CP} = 2.7 Hz, arom.), 134.1 (d, $J_{CP} = 2.1$ Hz, arom.), 129.5 (d, $J_{CP} =$ 2.2 Hz, arom.), 129.4 (d, $J_{CP} = 2.2$ Hz, arom.), 128.4 (s, arom.), 128.3 (s, arom.), 127.7 (d, $J_{CP} = 7.1$ Hz, arom.), 127.6 (d, $J_{CP} =$ 6.7 Hz, arom.), 127.2 (s, arom.), 126.5 (d, $J_{CP} = 5.2$ Hz, arom.), 125.7 (s, arom.), 123.9 (s, arom.), 121.3 (d, $J_{CP} = 4.0 \text{ Hz}$, arom.), 121.0 (d, $J_{CP} = 2.0 \text{ Hz}$, arom.), 115.2 (d, $J_{CP} = 3.8 \text{ Hz}$, indenyl), 114.1 (br. s, indenyl), 111.3 (d, $J_{CP} = 7.7 \text{ Hz}$, indenyl*), 110.9 (d, $J_{\rm CP} = 7.0 \, \rm Hz$, indenyl*), 110.7 (d, $J_{\rm CP} = 4.5 \, \rm Hz$, arom.), 109.9 (d, $J_{\rm CP}$ = 7.7 Hz, arom.), 109.7 (d, $J_{\rm CP}$ = 7.0 Hz, arom.), 108.4 (br. s, arom.), 91.4 (s, indenyl), 90.7 (s, indenyl*), 69.8 (d, $J_{CP} = 14.3 \text{ Hz}$, indenyl), 68.4 (d, $J_{CP} = 8.5 \text{ Hz}$, indenyl), 66.7 (d, $J_{CP} = 5.9 \text{ Hz}$, indenyl*), 64.3 (d, J_{CP} = 2.6 Hz, indenyl*), 54.8 (s, NCH), 54.4 (s, NCH*), 47.2 (d, $J_{CP} = 10.7 \text{ Hz}$, NCH₂), 47.0 (d, $J_{CP} = 9.2 \text{ Hz}$, NCH_2^*), 34.7 (d, J_{CP} = 3.8 Hz, CH_2), 34.5 (d, J_{CP} = 4.9 Hz, CH_2^*), 25.4 (d, $J_{CP} = 5.8 \text{ Hz}$, CH₂), 25.1 (d, $J_{CP} = 6.0 \text{ Hz}$, CH₂*), 23.1 (br. s, CH₃), 22.7 (br. s, CH₃*) ppm. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C): $\delta = 180.2$ (d, ${}^{2}J_{PP} = 77.0$ Hz, phosphoramidite), 176.8 (d, ${}^{2}J_{PP} = 72.8 \text{ Hz}$, phosphoramidite*), 61.9 (d, ${}^{2}J_{PP} =$ 77.0 Hz, PPh₃), 55.6 (d, ${}^{2}J_{PP}$ = 72.8 Hz, PPh₃*) ppm. IR (neat solid): $\tilde{v} = 3051$ (w), 2964 (w), 1479 (m), 1235 (m), 1090 (m), 818 $\mbox{(m) cm$^{-1}$. HRMS: calcd. for $C_{38}H_{36}ClNO_2P_{235}$^{102}Ru 737.0952$;}$ found 737.0950. $C_{38}H_{36}CINO_2P_2Ru$ (737.17): calcd. C 61.91, H 4.92; found C 61.07, H 4.96.

[Ru(Ind)(PPh₃)(5a)(diphenylallenylidene)]⁺[PF₆]⁻ (15a): In a typical procedure, CH₂Cl₂ (3 mL) was added to a Schlenk flask containing complex 12b (0.149 g, 0.145 mmol) and the orange solution was cooled to 0 °C. (Et₃O)PF₆ (0.036 g, 0.147 mmol) was added as a solution in CH₂Cl₂ (3 mL). The solution darkened slightly over 1 h and then 1,1-diphenyl-2-propyn-1-ol (14a; 0.037 g, 0.177 mmol, 1.2 equiv.) was added. The solution quickly turned dark purple. After 30 min, the cold bath was removed and the solution was warmed to room temperature over 30 min. The solvent was removed under oil-pump vacuum and the purple solid washed with Et₂O (4×3 mL) and dried under vacuum to give **15a** as a single diastereomer (0.163 g, 0.123 mmol, 85%); m.p. 173 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.25 (d, ³ $J_{\rm HH}$ = 8.8 Hz, 1 H, arom.), 8.09 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 1 H, arom.), 7.80 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 1 H, arom.), 7.65 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1 H, arom.), 7.60–7.47 (m, 4 H, arom.), 7.34 (d, ${}^{3}J_{HH} = 8.5 \text{ Hz}$, 1 H, arom.), 7.28 (t, ${}^{3}J_{HH}$ = 7.0 Hz, 3 H, arom.), 7.22–6.70 (m, 37 H, arom.), 6.62 (d, ${}^{3}J_{HH}$ = 4.8 Hz, 2 H, arom.), 6.49 (br. s, 1 H, indenyl), 5.51 (br. s, 1 H, indenyl), 5.28 (br. s, 1 H, indenyl), 5.23 (s, CH₂Cl₂), $4.10 \text{ (d, } ^2J_{HH} = 10.4 \text{ Hz}, 1 \text{ H, NC} HH'), 4.05 \text{ (d, } ^2J_{HH} = 10.4 \text{ Hz},$ 1 H, NCHH'), 3.06 (d, ${}^{2}J_{HH}$ = 14.3 Hz, 1 H, NCHH'), 3.02 (d, $^{2}J_{HH} = 14.3 \text{ Hz}, 1 \text{ H}, \text{ NCH}H') \text{ ppm.} \ ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR } (75 \text{ MHz},$ CDCl₃, 25 °C): δ = 293.8 (d, ${}^{2}J_{CP}$ = 21.9 Hz, C_{α}), 199.2 (s, C_{β}), 160.3 (s, C_{γ}), 149.4 (d, J_{CP} = 16.1 Hz, arom.), 147.9 (d, J_{CP} = 7.2 Hz, arom.), 143.0 (s, arom.), 136.6 (d, $J_{CP} = 2.6$ Hz, arom.), 135.0–133.0 (m, arom.), 132.6 (s, arom.), 132.5 (s, arom.), 131.8 (d, $J_{\rm CP} = 2.8$ Hz, arom.), 131.5 (s, arom.), 131.4 (s, arom.), 130.9 (s, arom.), 130.1 (s, arom.), 129.4 (s, arom.), 129.3 (s, arom.), 129.2 (d, $J_{\rm CP} = 2.8$ Hz, arom.), 128.9 (s, arom.), 128.8 (s, arom.), 128.7 (s, arom.), 128.6 (s, arom.), 128.5-128.1 (m, arom.), 128.0 (s, arom.), 127.7 (s, arom.), 127.1 (s, arom.), 126.9 (s, arom.), 126.4 (s, arom.), 125.8 (s, arom.), 124.6 (s, arom.), 123.4 (s, arom.), 122.5 (d, J_{CP} = 2.2 Hz, arom.), 122.1 (d, $J_{CP} = 3.3$ Hz, arom.), 121.6 (d, $J_{CP} =$ 2.7 Hz, arom.), 120.2 (s, arom.), 112.3 (d, $J_{CP} = 4.1$ Hz, indenyl), 108.1 (s, indenyl), 94.1 (s, indenyl), 85.3 (s, indenyl), 84.2 (d, ${}^{2}J_{CP}$ =

7.0 Hz, indenyl), 50.4 (s, CH₂), 50.3 (s, CH₂') ppm. $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃, 25 °C): δ = 169.5 (d, $^{2}J_{PP}$ = 34.0 Hz, phosphoramidite), 52.3 (d, $^{2}J_{PP}$ = 34.0 Hz, PPh₃), -143.4 (septet, $^{1}J_{PF}$ = 711 Hz, PF₆) ppm. IR (neat solid): \tilde{v} = 3056 (w), 2918 (w), 1935 (s, =C=C=C), 1586 (w), 1223 (m), 1058 (s), 1028 (s) cm⁻¹. HRMS: calcd. for $C_{76}H_{58}NO_{2}P_{2}^{102}Ru$ 1180.2985; found 1180.2981. $C_{76}H_{58}F_{6}NO_{2}P_{3}Ru^{*}(CH_{2}Cl_{2})_{0.5}$ (1367.73): calcd. C 67.18, H 4.35; found C 67.02, H 4.55.

[Ru(Ind)(PPh₃)(5b)(methylphenylallenylidene)]⁺[PF₆]⁻ (15b): Yield 0.082 g (0.064 mmol, 66%) from **12b** (0.100 g, 0.0977 mmol) and **14b** (0.017 g, 0.116 mmol); m.p. 173 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.30 (d, ${}^{3}J_{HH}$ = 8.7 Hz, 1 H, arom.), 8.16 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1 H, arom.), 7.87 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1 H, arom.), 7.79 (t, ${}^{3}J_{HH}$ = 7.8 Hz, 2 H, arom.), 7.72–7.54 (m, 5 H, arom.), 7.48 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1 H, arom.), 7.40–6.80 (m, 35 H, arom.), 6.56 (br. s, 1 H, indenyl), 5.38 (br. s, 2 H, indenyl), 4.01 (d, $^{2}J_{HH}$ = 10.8 Hz, 1 H, CHH'), 3.96 (d, $^{2}J_{HH}$ = 10.8 Hz, 1 H, CHH'), $3.42 \text{ (q, }^{3}J_{HH} = 7.2 \text{ Hz, } 1 \text{ H, CH}_{2}, \text{ Et}_{2}\text{O)}, 3.15 \text{ (d, }^{2}J_{HH} = 13.8 \text{ Hz,}$ 1 H, CHH'), 3.10 (d, ${}^{2}J_{HH}$ = 13.8 Hz, 1 H, CHH'), 1.64 (s, 3 H, CH₃), 1.13 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 1.5 H, CH₃, Et₂O) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (75 MHz, CDCl₃, 25 °C): δ = 297.5 (dd, ${}^{2}J_{CP}$ = 23.5, ${}^{2}J_{CP}$ = 20.7 Hz, C_{α}), 195.5 (d, ${}^{3}J_{CP}$ = 13.8 Hz, C_{β}), 162.8 (s, C_{γ}), 149.7 (s, arom.), 149.5 (s, arom.), 147.9 (d, $J_{CP} = 27.6$ Hz, arom.), 141.6 (s, arom.), 136.7 (d, $J_{CP} = 10.8$ Hz, arom.), 134.0 (s, arom.), 133.5– 133.3 (m, arom.), 132.7 (s, arom.), 131.9 (s, arom.), 131.6 (s, arom.), 131.4 (s, arom.), 131.1 (s, arom.), 130.6 (s, arom.), 129.6–127.8 (m, arom.), 127.6 (d, $J_{CP} = 24.6$ Hz, arom.), 127.1 (s, arom.), 126.8 (s, arom.), 126.4 (s, arom.), 125.9 (s, arom.), 124.6 (s, arom.), 123.7 (s, arom.), 122.4 (s, arom.), 121.9–121.7 (m, arom.), 120.3 (s, arom.), 112.4 (s, indenyl), 108.2 (d, ${}^{2}J_{CP} = 16.2 \text{ Hz}$, indenyl), 95.1 (s, indenyl), 83.7 (d, ${}^{2}J_{CP}$ = 30.3 Hz, indenyl), 82.7 (s, indenyl), 65.9 (s, CH₂, Et₂O), 50.3 (s, CH₂), 50.2 (s, CH₂), 30.3 (s, CH₃), 15.4 (s, CH₃, Et₂O) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (121 MHz, CDCl₃, 25 °C): δ = 171.4 (d, ${}^{2}J_{PP}$ = 37.6 Hz, phosphoramidite), 53.4 (d, ${}^{2}J_{CP}$ = 37.6 Hz, PPh₃), -143.4 (septet, ${}^{1}J_{PF} = 711$ Hz, PF₆) ppm. IR (neat solid): $\tilde{v} = 3052$ (w), 1942 (s, =C=C=C), 1585 (w), 1224 (m), 1066 (w), 828 (s) cm^{-1} . HRMS: calcd. for $C_{71}H_{56}NO_2P_2^{\ 102}Ru\ 1118.2828$; found 1118.2827. C₇₁H₅₂F₆NO₂P₃Ru·(Et₂O)_{0.25} (1277.69): calcd. C 67.47, H 4.60; found C 67.28, H 4.48.

[Ru(Ind)(PPh₃)(5b){(2-furyl)methylallenylidene}]⁺[PF₆]⁻ (15c): Yield 0.116 g (0.0913 mmol, 94%) from **12b** (0.100 g, 0.0976 mmol) and 2-(2-furyl)-3-butyn-2-ol (14c; 0.014 g, 0.017 mmol); m.p. 188-190 °C (dec., capillary). ¹H NMR (300 MHz, CD₂Cl₂, 25 °C): δ = 8.23 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 1 H, arom.), 8.10 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 1 H, arom.), 7.89 (s, 1 H, arom.), 7.78 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 1 H, arom.), 7.72–7.67 (m, 2 H, arom.), 7.57–7.51 (m, 1 H, arom.), 7.37 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 1 H, arom.), 7.27–7.23 (m, 8 H, arom.), 7.17–7.12 (m, 6 H, arom.), 7.11-7.00 (m, 8 H, arom.), 7.00-6.85 (m, 13 H, arom.), 6.61-6.59 (m, 1 H, arom.), 6.37 (br. s, indenyl), 5.20 (br. s, indenyl), 5.11 (br. s, indenyl), 3.90 (d, ${}^{2}J_{HH}$ = 11.0 Hz, 1 H, CHH'), 3.84 (d, $^{2}J_{HH}$ = 11.0 Hz, 1 H, CHH'), 3.01 (d, $^{2}J_{HH}$ = 13.4 Hz, 1 H, CHH'), 2.95 (d, ${}^{2}J_{HH}$ = 13.4 Hz, 1 H, CHH'), 1.50 (s, H₂O), 1.46 (s, 3 H, CH₃) ppm. 13 C{ 1 H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ = 282.7– 281.6 (m, C_{α}), 185.2 (s, C_{β}), 160.9 (s, C_{γ}), 151.5 (s, arom.), 150.0 (d, J_{CP} = 16.1 Hz, arom.), 148.4 (d, J_{CP} = 7.3 Hz, arom.), 145.3 (s, arom.), 142.4 (s, arom.), 139.7 (s, arom.), 137.4 (br. s, arom.), 136.7 (d, $J_{CP} = 10.4 \text{ Hz}$, arom.), 133.8 (br. s, arom.), 133.0 (s, arom.), 132.3 (s, arom.), 131.8 (s, arom.), 131.4 (d, $J_{CP} = 8.4 \text{ Hz}$, arom.), 130.7 (br. s, arom.), 129.8 (s, arom.), 129.2 (d, $J_{CP} = 4.4$ Hz, arom.), 128.9 (s, arom.), 128.7 (s, arom.), 128.4 (s, arom.), 128.2 (s, arom.), 128.0 (s, arom.), 127.7 (d, J_{CP} = 4.4 Hz, arom.), 127.3 (d, J_{CP} = 6.2 Hz, arom.), 127.1 (s, arom.), 126.6 (s, arom.), 126.0 (s, arom.), 124.9 (s, arom.), 124.0 (s, arom.), 122.9 (s, arom.), 122.3–121.9 (m,

arom.), 120.7 (s, arom.), 116.2 (s, arom.), 112.2 (s, indenyl), 107.6 (s, indenyl), 95.5 (s, indenyl), 82.7 (s, indenyl), 81.7 (s, indenyl), 50.4 (s, CH₂), 50.3 (s, CH₂), 28.2 (s, CH₃) ppm. $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃, 25 °C): δ = 174.3 (d, $^{2}J_{PP}$ = 38.2 Hz, phosphoramidite), 55.9 (d, $^{2}J_{PP}$ = 38.2 Hz, PPh₃), -143.4 (septet, $^{1}J_{PF}$ = 711 Hz, PF₆) ppm. IR (neat solid): \tilde{v} = 3267 (m, H₂O), 3051 (w), 2923 (w), 1949 (s, =C=C=C), 1546 (w), 1430 (m), 1221 (m), 940 (s) cm⁻¹. HRMS: calcd. for $C_{69}H_{54}NO_{3}P_{2}^{102}Ru$ 1108.2622; found 1108.2654. $C_{69}H_{54}F_{6}NO_{3}P_{3}Ru\cdot H_{2}O$ (1271.17): calcd. C 65.20, H 4.44; found C 64.93, H 4.30.

[Ru(Ind)(PPh₃){(R)-binol-N,N-dibenzylphosphoramidite}{bis(4-fluorophenyl)allenylidene}] $^+$ [PF₆] $^-$ (15d): Yield 0.135 g (0.0992 mmol, 76%) from 12b (0.102 g, 0.0995 mmol) and 3,3-bis(4-fluorophenyl)-2-propyn-1-ol (14d, 0.029 g, 0.119 mmol); m.p. 196-198 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.25 (d, ³ J_{HH} = 8.8 Hz, 1 H, arom.), 8.10 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1 H, arom.), 7.81 (d, ${}^{3}J_{HH}$ = 9.0 Hz, 1 H, arom.), 7.66 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 1 H, arom.), 7.55–7.50 (m, 2 H, arom.), 7.37 (d, ${}^{3}J_{HH} = 8.4 \text{ Hz}$, 1 H, arom.), 7.26 (t, ${}^{3}J_{HH}$ = 7.6 Hz, 3 H, arom.), 7.19–7.02 (m, 16 H, arom.), 7.00–6.96 (m, 6 H, arom.), 6.95–6.90 (m, 5 H, arom.), 6.86–6.82 (m, 11 H, arom.), 6.66 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 1 H, arom.), 6.56 (br. s, 1 H, indenyl), 5.53 (br. s, 1 H, indenyl), 5.22 (br. s, 1 H, indenyl), $4.07 \text{ (d, }^2J_{HH} = 10.5 \text{ Hz}, 1 \text{ H, C}HH'), 4.02 \text{ (d, }^2J_{HH} = 10.5 \text{ Hz}, 1$ H, CHH'), 3.04 (d, ${}^{2}J_{HH}$ = 14.2 Hz, 1 H, CHH'), 2.99 (d, ${}^{2}J_{HH}$ = 14.2 Hz, 1 H, CHH') ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ = 291.9–291.3 (m, C_{α}), 198.5 (s, C_{β}), 166.9 (s, C_{γ}), 163.5 (s, arom.), 155.5 (s, arom.), 149.3 (d, $J_{CF} = 61.5$ Hz, arom.), 147.8 (d, J_{CP} = 28.8 Hz, arom.), 139.2 (s, arom.), 136.6 (s, arom.), 133.7 (s, arom.), 133.6 (s, arom.), 133.2 (s, arom.), 132.4 (s, arom.), 131.7 (s, arom.), 131.3 (s, arom.), 130.8 (br. s, arom.), 130.0 (s, arom.), 129.2 (s, arom.), 128.8 (s, arom.), 128.6 (s, arom.), 128.5 (s, arom.), 128.3 (br. s, arom.), 128.0 (s, arom.), 127.6 (s, arom.), 127.1 (d, J_{CP} = 18.3 Hz, arom.), 126.9 (s, arom.), 126.4 (s, arom.), 125.9 (s, arom.), 124.8 (s, arom.), 123.5 (s, arom.), 122.4 (s, arom.), 122.0 (s, arom.), 121.6 (s, arom.), 120.0 (s, arom.), 116.4 (s, arom.), 116.1 (s, arom.), 112.4 (s, arom.), 107.6 (s, indenyl), 94.3 (s, indenyl), 85.7 (s, indenyl), 83.9 (d, ${}^{2}J_{CP}$ = 28.8 Hz, indenyl), 66.0 (s, indenyl), 50.3 (s, NCH₂), 50.1 (s, NCH₂) ppm. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C): $\delta = 169.8$ (d, ${}^{2}J_{PP} = 35.2$ Hz, phosphoramidite), 52.8 (d, $^{2}J_{PP} = 35.2 \text{ Hz}, \text{ PPh}_{3}, -143.5 \text{ (septet, }^{1}J_{PF} = 711 \text{ Hz}, \text{ PF}_{6}) \text{ ppm}.$ IR (neat solid): $\tilde{v} = 3053$ (w), 1938 (s, =C=C=C), 1592 (m), 1502 (w), 1226 (m), 952 (m), 831 (s) cm⁻¹. HRMS: calcd. for $C_{76}H_{56}NO_2P_2F_2^{102}Ru$ 1216.2797; found 1216.2761. $C_{76}H_{56}F_8NO_2$ -P₃Ru (1361.24): calcd. C 67.06, H 4.15; found C 66.60, H 3.97.

[Ru(Ind)(PPh₃)(5b){methyl(4-methoxyphenyl)allenylidene}]⁺[PF₆]⁻ (15e): Yield 0.083 g (0.064 mmol, 66%) from 12b (0.100 g, 0.0979 mmol) and 2-(4-methoxylphenyl)-3-butyn-2-ol (14e; 0.021 g, 0.119 mmol); m.p. 150-152 °C (dec., capillary). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.21 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 1 H, arom.), 8.07 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1 H, arom.), 7.79 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 1 H, arom.), 7.71-7.65 (m, 2 H, arom.), 7.53-7.49 (m, 3 H, arom.), 7.39 (d, ${}^{3}J_{HH}$ = 8.51 Hz, 1 H, arom.), 7.30–7.19 (m, 3 H, arom.), 7.18– 7.10 (m, 10 H, arom.), 7.08-6.80 (m, 19 H, arom.), 6.76-6.60 (m, 4 H, arom.), 6.31 (br. s, 1 H, indenyl), 5.22 (br. s, 2 H, indenyl), 3.97 (d, ${}^{2}J_{HH}$ = 10.6 Hz, 1 H, CHH'), 3.92 (d, ${}^{2}J_{HH}$ = 10.6 Hz, 1 H, CHH'), 3.87 (s, 3 H, OCH₃), 3.02 (d, ${}^{2}J_{HH}$ = 13.0 Hz, 1 H, CHH'), 2.97 (d, ${}^{2}J_{HH} = 13.0 \text{ Hz}$, 1 H, CHH'), 1.59 (s, 3 H, CH₃) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (75 MHz, CDCl₃, 25 °C): δ = 282.0 (dd, $^{2}J_{\text{CP}} = 23.5, \,^{2}J_{\text{CP}} = 21.3 \,\text{Hz}, \, C_{\alpha}$), 181.9 (s, C_{β}), 166.0 (s, C_{γ}), 163.6 (s, arom.), 149.8 (d, J_{CP} = 15.5 Hz, arom.), 148.0 (d, J_{CP} = 7.5 Hz, arom.), 136.9 (d, $J_{CP} = 2.3$ Hz, arom.), 135.8 (s, arom.), 133.3 (br. s, arom.), 132.6 (s, arom.), 131.8 (s, arom.), 131.3 (s, arom.), 131.1 (s, arom.), 130.4 (br. s, arom.), 128.9 (d, J_{CP} = 2.3 Hz, arom.), 128.7

(s, arom.), 128.6 (s, arom.), 128.5 (s, arom.), 128.2 (s, arom.), 128.0 (s, arom.), 127.9 (s, arom.), 127.8 (s, arom.), 127.2 (s, arom.), 126.9 (s, arom.), 126.2 (s, arom.), 125.8 (s, arom.), 124.6 (s, arom.), 123.9 (s, arom.), 122.4 (d, $J_{\rm CP} = 2.3$ Hz, arom.), 122.0 (d, $J_{\rm CP} = 3.5$ Hz, arom.), 121.8 (d, $J_{\rm CP} = 2.9$ Hz, arom.), 120.4 (s, arom.), 115.2 (s, arom.), 111.7 (s, arom.), 107.9 (d, $^2J_{\rm CP} = 4.6$ Hz, indenyl), 95.4 (s, indenyl), 81.8 (d, $^2J_{\rm CP} = 7.7$ Hz, indenyl), 80.2 (s, indenyl), 66.1 (s, indenyl), 56.5 (s, OCH₃), 50.1 (s, NCH₂), 50.0 (s, NCH₂'), 29.3 (s, CH₃) ppm. 31 P{ 1 H} NMR (121 MHz, CDCl₃, 25 °C): $\delta = 173.1$ (d, $^2J_{\rm PP} = 38.8$ Hz, phosphoramidite), 54.6 (d, $^2J_{\rm PP} = 38.8$ Hz, PPh₃), -143.5 (septet, $^1J_{\rm PF} = 711$ Hz, PF₆) ppm. IR (neat solid): $\bar{\rm v} = 3053$ (w), 1941 (s, =C=C=C), 1587 (s), 1225 (w), 1172 (m), 832 (m) cm⁻¹. HRMS: calcd. for ${\rm C}_{72}{\rm H}_{58}{\rm NO}_3{\rm P}_2^{102}{\rm Ru}$ 1148.2935; found 1148.2966. ${\rm C}_{72}{\rm H}_{58}{\rm F}_6{\rm NO}_3{\rm P}_3{\rm Ru}$ (1293.22): calcd. C 66.87, H 4.52; found C 66.58, H 4.58.

X-ray Structure Determination for 5b, 12b, [15a]⁺[PF₆]⁻, [15b]⁺[PF₆]⁻, and [15d]⁺[PF₆]⁻: X-ray quality crystals of 5b were obtained by addition of hexanes to a solution of 5b in CH₂Cl₂ at -10 °C. X-ray quality crystals of 12b were obtained by addition of Et₂O to a solution of 12b in CH₂Cl₂, which was stored at -10 °C for several days. X-ray quality crystals of [15a]⁺[PF₆]⁻, [15b]⁺[PF₆]⁻, and [15d]⁺[PF₆]⁻ were obtained by slow diffusion of Et₂O into a solution of [15a]⁺[PF₆]⁻, [15b]⁺[PF₆]⁻, and [15d]⁺[PF₆]⁻ in CH₂Cl₂ at -10 °C.

Preliminary examination and X-ray data collection were performed using a Bruker Kappa Apex II Charge-Coupled Device (CCD) Detector system single-crystal X-ray diffractometer equipped with an

Oxford Cryostream LT device. Intensity data were collected by a combination of ω and ϕ scans. Apex II, SAINT, and SADABS^[41] software packages were used for data collection, integration, and correction of systematic errors, respectively.

Crystal data and intensity data collection parameters are listed in Table 2. Structure solution and refinement were carried out by using the SHELXTL-PLUS software package. [39] The structures were solved by direct methods and refined successfully in the space groups P65 (5b), P21 (12b), and P1 ([15a]+[PF₆]-, [15b]+[PF₆]-, and [15d]+[PF₆]-). The non-hydrogen atoms were refined anisotropically to convergence. All hydrogen atoms were treated by using the appropriate riding model (AFIX m3). The structure of 12b shows disorder in the ligand as well as in the solvent. The structure of [15a]+[PF₆]- shows disorder in the solvent. The disorders have been modeled with partial occupancy atoms. Two phenyl rings and the six-membered ring fused to the Cp ring of [15d]+[PF₆]- were disordered. The PF₆- anion was also disordered. The disorders were resolved with partial occupancy atoms and were refined with geometrical restraints and thermal parameter restraints.

CCDC-798362 (for 5a), -726745 (for 12b), -726746 (for $[15a][PF_6]$), -730038 (for $[15b][PF_6]$), and -797367 (for $[15d][PF_6]$) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): Experimental data for compounds 16, dynamic NMR spectra

Table 2. Crystallographic parameters.

	5b	$\mathbf{12b} \boldsymbol{\cdot} (\mathrm{CH_2Cl_2})$	$\textbf{[15a]} [PF_6] \boldsymbol{\cdot} (CH_2Cl_2)$	$\textbf{[15b]} [PF_6] \boldsymbol{\cdot} (CH_2Cl_2)_2$	[15d][PF ₆]		
Empirical formula	C ₃₄ H ₂₆ NO ₂ P	C ₆₂ H ₅₀ Cl ₃ NO ₂ P ₂ Ru	C ₇₇ H ₆₀ Cl ₂ F ₆ NO ₂ P ₃ Ru	C ₇₃ H ₆₀ Cl ₄ F ₆ NO ₂ P ₃ Ru	C ₇₆ H ₅₆ F ₈ NO ₂ P ₃ Ru		
$M_{ m r}$	511.53	1110.39	1410.14	1433.00	1361.20		
$T [K]/\lambda [Å]$	293(2)/0.71073	100(2)/0.71073	100(2)/0.71073	100(2)/0.71073	100(2)/0.71073		
Crystal system	hexagonal	monoclinic	triclinic	triclinic	triclinic		
Space group	P6(5)	$P2_1$	P1	P1	P1		
Unit cell dimensions							
a [Å]	23.743(6)	10.6869(6)	11.2299(5)	11.0664(8)	10.7555(5)		
b [Å]	23.743(6)	14.1253(8)	11.6496(5)	12.0459(10)	11.9134(5)		
c [Å]	9.373(3)	17.5760(11)	14.4331(9)	13.5914(12)	14.1022(10)		
a [°]	90	90	107.864(3)	107.535(4)	108.600(4)		
β [°]	90	98.355(3)	99.934(2)	96.060(4)	98.130(4)		
γ [°]	120	90	107.804(2)	109.111(3)	107.670(3)		
$V[\mathring{A}^3]/Z$	4576(2)/6	2625.0(3)/2	1635.53(14)/1	1589.9(2)/1	1573.99(15)/1		
$\rho_{\rm calcd.}$ [Mg m ⁻³]	1.114	1.405	1.432	1.497	1.436		
Abs. coeff. [mm ⁻¹]	0.118	0.558	0.461	0.557	0.399		
F(000)	1608	1140	722	732	696		
Crystal size [mm]	$0.51 \times 0.13 \times 0.10$	$0.34 \times 0.30 \times 0.28$	$0.37 \times 0.27 \times 0.21$	$0.40 \times 0.29 \times 0.28$	$0.23 \times 0.18 \times 0.14$		
θ range [°]	2.39-25.44	1.86-4.02	2.14-35.14	1.61-33.05	1.94-27.33		
Index ranges	$-28 \le h \le 28$,	$-16 \le h \le 15$,	$-18 \le h \le 7$,	$-16 \le h \le 16$,	$-13 \le h \le 13$,		
	$-28 \le k \le 28$,	$-15 \le k \le 22$,	$-18 \le k \le 18$,	$-18 \le k \le 17$,	$-15 \le k \le 15$,		
	$-11 \le l \le 10$	$-27 \le l \le 27$	$-23 \le l \le 23$	$-19 \le l \le 20$	$-18 \le l \le 17$		
Reflections collected	95194	59037	30278	78842	57561		
Independent refl.	5596	18483	19876	20252	13669		
	[R(int) = 0.0615]	[R(int) = 0.0316]	[R(int) = 0.026]	[R(int) = 0.029]	[R(int) = 0.055]		
Abs. correction			semi-empirical from equivalents				
Max./min. transmission	0.9880/0.9420	0.8594/0.8312	0.9102/0.8464	0.8588/0.8076	0.9478/0.9132		
Data/restraints/param.	5596/1/343	18483/97/715	19876/89/901	20252/23/821	13669/123/1025		
Goodness-of-fit on F^2	1.090	1.020	1.018	1.046	1.070		
Final R indices	$R_1 = 0.0479$	$R_1 = 0.0485$	$R_1 = 0.0416$	$R_1 = 0.0323$	$R_1 = 0.0447$		
$[I > 2\sigma(I)]$	$wR_2 = 0.1130$	$wR_2 = 0.1174$	$wR_2 = 0.1017$	$wR_2 = 0.0862$	$wR_2 = 0.1166$		
R indices	$R_1 = 0.0873$	$R_1 = 0.0622$	$R_1 = 0.0482$	$R_1 = 0.0336$	$R_1 = 0.0494$		
(all data)	$wR_2 = 0.1347$	$wR_2 = 0.1271$	$wR_2 = 0.1063$	$wR_2 = 0.0871$	$wR_2 = 0.1210$		
Largest diff. peak/hole [eÅ ⁻³]	0.298/-0.233	1.984/-0.664	0.999/-0.852	1.032/–1.144	1.470/-0.859		
Absolute structure parameter	-0.02(12)	-0.01(2)	-0.014(14)	-0.009(10)	-0.031(18)		

for compounds 12b, 17, and 15a, NMR spectra (¹H, ¹³C) for all metal complexes 15 and 16.

Acknowledgments

We thank the University of Missouri – St. Louis for support. Funding from the National Science Foundation (NSF) for the purchase of the ApexII diffractometer (MRI, CHE-0420497), the NMR spectrometer (CHE-9974801), and the mass spectrometer (CHE-9708640) is acknowledged.

- For reviews, see: a) V. Cadierno, J. Gimeno, Chem. Rev. 2009, 109, 3512–3560; b) C.-M. Che, C.-M. Ho, J. S. Huang, Coord. Chem. Rev. 2007, 251, 2145–2166; c) R. F. Winter, S. Záliš, Coord. Chem. Rev. 2004, 248, 1565–1583; d) S. Rigaut, D. Touchard, P. H. Dixneuf, Coord. Chem. Rev. 2004, 248, 1585–1601; e) V. Cadierno, M. P. Gamasa, J. Gimeno, Eur. J. Inorg. Chem. 2001, 571–591; f) M. I. Bruce, Chem. Rev. 1998, 98, 2797–2858; g) H. Werner, Chem. Commun. 1997, 903–910.
- [2] a) E. O. Fischer, H.-J. Kalder, A. Frank, F. H. Köhler, G. Huttner, Angew. Chem. 1976, 88, 683; Angew. Chem. Int. Ed. Engl. 1976, 15, 623–624; b) H. Berke, Angew. Chem. 1976, 88, 684; Angew. Chem. Int. Ed. Engl. 1976, 15, 624.
- [3] J. P. Selegue, Organometallics 1982, 1, 217–218.
- [4] For representative examples, see: a) L.-H. Chang, C.-W. Yeh, H.-W. Ma, S.-Y. Liu, Y.-C. Lin, Y. Wang, Y.-H. Liu, Organometallics 2010, 29, 1092-1099; b) L. T. Byrne, G. A. Koutsantonis, V. Sanford, J. P. Selegue, P. A. Schauer, R. S. Iyer, *Organometal*lics 2010, 29, 1199-1209; c) A. García-Fernández, M. P. Gamasa, E. Lastra, J. Organomet. Chem. 2010, 695, 162-169; d) J. A. Pino-Chamorro, E. Bustelo, M. C. Puerta, P. Valerga, Organometallics 2009, 28, 1546-1557; e) E. A. Shaffer, C. L. Chen, A. M. Beatty, E. J. Valente, H.-J. Schanz, J. Organomet. Chem. 2007, 692, 5221-5233; f) S. Conejero, J. Díez, M. P. Gamasa, J. Gimeno, Organometallics 2004, 23, 6299-6310; g) V. Cadierno, S. Conejero, M. P. Gamasa, J. Gimeno, M. A. Rodríguez, Organometallics 2002, 21, 203-209; h) V. Cadierno, S. Conejero, M. P. Gamasa, J. Gimeno, L. R. Falvello, R. M. Llusar, Organometallics 2002, 21, 3716-3726; i) R. F. Winter, K.-W. Klinkhammer, Organometallics 2001, 20, 1317-1333; j) A. Fürstner, M. Liebl, C. W. Lehmann, M. Picquet, R. Kunz, C. Bruneau, D. Touchard, P. H. Dixneuf, Chem. Eur. J. 2000, 6, 1847-1857; k) V. Cadierno, M. P. Gamasa, J. Gimeno, M. González-Cueva, E. Lastra, J. Borge, S. García-Granda, E. Pérez-Carreño, Organometallics 1996, 15, 2137-2147; 1) M. A. Esteruelas, A. V. Gómez, F. J. Lahoz, A. M. López, E. Oñate, L. A. Oro, Organometallics 1996, 15, 3423-3435; m) R. F. Winter, Eur. J. Inorg. Chem. 1999, 2121-2126.
- [5] a) N. Szesni, M. Drexler, J. Maurer, R. F. Winter, F. de Montigny, C. Lapinte, S. Steffens, J. Heck, B. Weibert, H. Fischer, Organometallics 2006, 25, 5774-5787; b) W.-S. Ojo, F. Y. Pétillon, P. Schollhammer, J. Talarmin, K. W. Muir, Organometallics 2006, 25, 5503-5505; c) C. Bianchini, N. Mantovani, L. Marvelli, M. Peruzzini, R. Rossi, A. Romerosa, J. Organomet. Chem. 2001, 617-618, 233-241; d) K. Ilg, H. Werner, Organometallics 2001, 20, 3782-3794; e) C. Gauss, D. Veghini, O. Orama, H. Berke, J. Organomet. Chem. 1997, 541, 19-38; f) R. Castarlenas, M. A. Esteruelas, R. Lalrempuia, M. Oliván, E. Oñate, Organometallics 2008, 27, 795-798; g) A. Collado, M. A. Esteruelas, F. López, J. L. Mascareñas, E. Oñate, B. Trillo, Organometallics, DOI: 10.1021/om100192t; h) F. Kessler, N. Szesni, K. Põhako, B. Weibert, H. Fischer, Organometallics 2009, 28, 348-354; i) F. Kessler, B. Weibert, H. Fischer, Organometallics, DOI: 10.1021/om100346x.
- [6] M. Hussain, S. Kohser, K. Janssen, R. Wartchow, H. Butenschön, *Organometallics* 2009, 28, 5212–5221.
- [7] a) C. Bruneau, P. H. Dixneuf, Angew. Chem. 2006, 118, 2232;Angew. Chem. Int. Ed. 2006, 45, 2176–2203; b) I. Dragutan, V.

- Dragutan, *Platinum Met. Rev.* **2006**, *50*, 81–94; c) B. M. Trost, M. U. Frederiksen, M. T. Rudd, *Angew. Chem.* **2005**, *117*, 6788; *Angew. Chem. Int. Ed.* **2005**, *44*, 6630–6666.
- [8] a) A. Fürstner, M. Picquet, C. Bruneau, P. H. Dixneuf, Chem. Commun. 1998, 1315–1316; b) A. Fürstner, A. F. Hill, M. Liebl, J. D. E. T. Wilton-Ely, Chem. Commun. 1999, 601–602; c) R. Castarlenas, C. Vovard, C. Fischmeister, P. H. Dixneuf, J. Am. Chem. Soc. 2006, 128, 4079–4089; d) C. E. Diesendruck, E. Tzur, N. G. Lemcoff, Eur. J. Inorg. Chem. 2009, 4185–4203; e) X. Sauvage, Y. Borguet, G. Zaragoza, A. Demonceau, Adv. Synth. Catal. 2009, 351, 441–455; f) N. Ledoux, R. Drozdzak, B. Allaert, A. Linden, P. Van Der Voort, F. Verpoort, Dalton Trans. 2007, 5201–5210.
- [9] S. M. Maddock, M. G. Finn, Angew. Chem. 2001, 113, 2196; Angew. Chem. Int. Ed. 2001, 40, 2138–2141.
- [10] N. Auger, D. Touchard, S. Rigaut, J.-F. Halet, J.-Y. Saillard, Organometallics 2003, 22, 1638–1644.
- [11] a) T. Bolaño, R. Castarlenas, M. A. Esteruelas, E. Oñate, Organometallics 2008, 27, 6367–6370; b) E. Bustelo, M. Jiménez-Tenorio, K. Mereiter, M. C. Puerta, P. Valerga, Organometallics 2002, 21, 1903–1911; c) M. I. Bruce, P. J. Low, E. R. T. Tieknink, J. Organomet. Chem. 1999, 572, 3–10; d) D. J. Bernad, M. A. Esteruelas, A. M. López, J. Modrego, M. C. Puerta, P. Valerga, Organometallics 1999, 18, 4995–5003.
- [12] V. Cadierno, M. P. Gamasa, J. Gimeno, E. Pérez-Carreño, S. García-Granda, Organometallics 1999, 18, 2821–2832.
- [13] K. M. Nicholas, Acc. Chem. Res. 1987, 20, 207-214.
- [14] a) Y. Tanabe, K. Kanao, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 1138–1142; b) Y. Yamauchi, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 48–50; c) M. Daini, M. Yoshikawa, Y. Inada, S. Uemura, K. Sakata, K. Kanao, Y. Miyake, Y. Nishibayashi, Organometallics 2008, 27, 2046–2051; d) Y. Yada, Y. Miyake, Y. Nishibayashi, Organometallics 2008, 27, 3614–3617; e) Y. Nishibayashi, S. Uemura, Curr. Org. Chem. 2006, 10, 135–150.
- [15] V. Cadierno, J. Díez, S. E. García-Garrido, J. Gimeno, *Chem. Commun.* 2004, 2716–2717.
- [16] a) K. Kanao, Y. Miyake, Y. Nishibayashi, Organometallics 2010, 29, 2126–2131; b) K. Kanao, Y. Miyake, Y. Nishibayashi, Organometallics 2009, 28, 2920–2926; c) K. Fukamizu, Y. Miyake, Y. Nishibayashi, J. Am. Chem. Soc. 2008, 130, 10498–10499; d) H. Matsuzawa, K. Kanao, Y. Miyake, Y. Nishibayashi, Org. Lett. 2007, 9, 5561–5564; e) H. Matsuzawa, Y. Miyake, Y. Nishibayashi, Angew. Chem. 2007, 119, 6608; Angew. Chem. Int. Ed. 2007, 46, 6488–6491; f) Y. Inada, Y. Nishibayashi, S. Uemura, Angew. Chem. 2005, 117, 7893; Angew. Chem. Int. Ed. 2005, 44, 7715–7717.
- [17] a) Y. Nishibayashi, H. Imajima, G. Onodera, S. Uemura, Organometallics 2005, 24, 4106–4109; b) V. Cadierno, S. Conejero, M. P. Gamasa, J. Gimeno, Organometallics 2001, 20, 3175–3189; c) V. Cadierno, S. Conejero, M. P. Gamasa, J. Gimeno, Dalton Trans. 2003, 3060–3066; d) K. Kanao, Y. Tanabe, Y. Miyake, Y. Nishibayashi, Organometallics 2010, 29, 2381–2384.
- [18] a) A. García-Fernández, J. Gimeno, E. Lastra, C. A. Madrigal,
 C. Graiff, A. Tiripicchio, Eur. J. Inorg. Chem. 2007, 732–741;
 b) Y.-W. Zhong, Y. Matsuo, E. Nakamura, Chem. Asian J. 2007, 2, 358–366.
- [19] a) C. Ganter, Chem. Soc. Rev. 2003, 32, 130–138; b) J. W. Faller,
 J. Parr, A. R. Lavoie, New J. Chem. 2003, 27, 899–901; c) H.
 Brunner, Eur. J. Inorg. Chem. 2001, 905–912.
- [20] For representative examples, see: a) D. Carmona, M. P. Lamata, F. Viguri, R. Rodríguez, F. J. Lahoz, M. J. Fabra, L. A. Oro, *Tetrahedron: Asymmetry* 2009, 20, 1197–1205; b) S. J. Malcolmson, S. J. Meek, E. S. Sattely, R. R. Schrock, A. H. Hoveyda, *Nature* 2008, 456, 933–937; c) O. Hamelin, M. Rimboud, J. Pécaut, M. Fontecave, *Inorg. Chem.* 2007, 46, 5354–5360; d) M. Lasa, P. López, C. Cativiela, C. Carmona, L. A. Oro, *J. Mol. Catal. A* 2005, 234, 129–135; e) K. Kromm, P. L. Osburn, J. A. Gladysz, *Organometallics* 2002, 21, 4275–4280; f)

- J. W. Faller, B. J. Grimmond, *Organometallics* **2001**, 20, 2454–2458.
- [21] a) J. F. Teichert, B. L. Feringa, Angew. Chem. 2010, 122, 2538; Angew. Chem. Int. Ed. 2010, 49, 2486–2528; b) R. Hulst, N. K. de Vries, B. L. Feringa, Tetrahedron: Asymmetry 1994, 5, 699–708; c) B. L. Feringa, Acc. Chem. Res. 2000, 33, 346–353; d) A. Duursma, J.-G. Boiteau, L. Lefort, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, A. J. Minnaard, B. L. Feringa, J. Org. Chem. 2004, 69, 8045–8052; e) R. Hoen, M. van den Berg, H. Bernsmann, A. J. Minnaard, J. G. de Vries, B. L. Feringa, Org. Lett. 2004, 6, 1433–1436; f) I. S. Mikhel, H. Rüegger, P. Butti, F. Camponovo, D. Huber, A. Mezzetti, Organometallics 2008, 27, 2937–2948; g) T. Osswald, I. S. Mikhel, H. Rüegger, P. Butti, A. Mezzetti, Inorg. Chim. Acta 2010, 363, 474–480; h) T. Osswald, H. Rüegger, A. Mezzetti, Chem. Eur. J. 2010, 16, 1388–1397.
- [22] For recent examples, see: a) S. M. Smith, J. M. Takacs, Org. Lett. 2010, 12, 4612-4615; b) M. Roggen, E. M. Carreira, J. Am. Chem. Soc. 2010, 132, 11917-11919; c) M. A. Fernández-Zúmel, B. Lastra-Barreira, M. Scheele, J. Díez, P. Crochet, J. Gimeno, Dalton Trans. 2010, 39, 7780–7785; d) X.-C. Qiao, S.-F. Zhu, W.-Q. Chen, Q.-L. Zhou, Tetrahedron: Asymmetry 2010, 21, 1216-1220; e) N. Mršić, T. Jerphagnon, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Tetrahedron: Asymmetry 2010, 21, 7-10; f) L. M. Stanley, C. Bai, M. Ueda, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 8918-8920; g) J. A. Raskatov, S. Spiess, C. Gnamm, K. Brödner, F. Rominger, G. Helmchen, Chem. Eur. J. 2010, 16, 6601-6615; h) A. Mercier, X. Urbaneja, W. C. Yeo, P. D. Chaudhuri, G. R. Cumming, D. House, G. Bernardinelli, E. P. Kündig, Chem. Eur. J. 2010, 16, 6285-6299; i) L. Palais, L. Babel, A. Quintard, S. Belot, A. Alexakis, Org. Lett. 2010, 12, 1988-1991; j) H. He, W.-B. Liu, L.-X. Dai, S.-L. You, Angew. Chem. 2010, 122, 1538; Angew. Chem. Int. Ed. 2010, 49, 1496–1499; k) J.-L. Zeng, S.-B. Yu, Z. Cao, D.-W. Yang, Catal. Lett. 2010, 136, 243-248; 1) M. Batuecas, M. A. Esteruelas, C. García-Yebra, E. Oñate, Organometallics 2010, 29, 2166-2175.
- [23] S. Costin, N. P. Rath, E. B. Bauer, Inorg. Chim. Acta 2009, 362, 1935–1942.
- [24] M. E. Rerek, L.-N. Ji, F. Basolo, J. Chem. Soc., Chem. Commun. 1983, 1208–1209.
- [25] a) X. Xu, Y. Chen, J. Feng, G. Zou, J. Sun, *Organometallics* 2010, 29, 549–553; b) M. Lenze, S. L. Sedinkin, N. P. Rath, E. B. Bauer, *Tetrahedron Lett.* 2010, 51, 2855–2858; c) C. E. Garrett, G. C. Fu, *J. Org. Chem.* 1998, 63, 1370–1371.

- [26] a) J. M. O'Connor, C. P. Casey, Chem. Rev. 1987, 87, 307–318;
 b) M. P. Gamasa, J. Gimeno, C. Gonzalez-Bernardo, B. M. Martín-Vaca, Organometallics 1996, 15, 302–308;
 c) V. Cadierno, J. Diez, M. P. Gamasa, J. Gimeno, E. Lastra, Coord. Chem. Rev. 1999, 193–195, 147–205;
 d) M. J. Calhorda, C. C. Romão, L. F. Veiros, Chem. Eur. J. 2002, 8, 868–875;
 e) E. J. Derrah, J. C. Marlinga, D. Mitra, D. M. Friesen, S. A. Hall, R. McDonald, L. Rosenberg, Organometallics 2005, 24, 5817–5827
- [27] S. Costin, N. P. Rath, E. B. Bauer, Tetrahedron Lett. 2009, 50, 5485–5488.
- [28] L. A. Oro, M. A. Ciriano, M. Campo, J. Organomet. Chem. 1985, 289, 117–131.
- [29] M. Hölscher, G. Franció, W. Leitner, *Organometallics* 2004, 23, 5606–5617.
- [30] J. P. Selegue, B. A. Young, S. L. Logan, Organometallics 1991, 10, 1972–1980.
- [31] a) A. Antonucci, M. Bassetti, C. Bruneau, P. H. Dixneuf, C. Pasquini, *Organometallics* 2010, 29, 4524–4531; b) H.-J. Schanz, L. Jafarpour, E. D. Stevens, S. P. Nolan, *Organometallics* 1999, 18, 5187–5190.
- [32] H. Kopf, C. Pietraszuk, E. Hübner, N. Burzlaff, Organometallics 2006, 25, 2533–2546.
- [33] C. R. Smith, D. J. Mans, T. V. RajanBabu, Org. Synth. 2008, 85, 238–247.
- [34] F. M. Semmelhack, N. Jeong, *Tetrahedron Lett.* **1990**, *31*, 605–608
- [35] a) C. Botteghi, M. Marchetti, S. Paganellia, F. Persi-Paoli, *Tet-rahedron* 2001, 57, 1631–1637; b) J. S. Schneekloth Jr., M. Pucheault, C. M. Crews, *Eur. J. Org. Chem.* 2007, 40–43.
- [36] The asterisk (*) denotes the second (minor) diastereomer.
- [37] Peaks corresponding to the minor diastereomer were not observed.
- [38] The methine proton is not visible and is assumed to be overlapped by aromatic protons.
- [39] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [40] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466–470
- [41] Bruker Analytical X-ray, Madison, WI, 2008; Bruker Analytical X-ray, Madison, WI, 2010.

Received: November 4, 2010 Published Online: February 2, 2011